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Abstract
We consider several ways of how one could classify the various types of soliton
solutions related to multicomponent nonlinear evolution equations which are
solvable by the inverse scattering method for the generalized Zakharov–Shabat
system related to a simple Lie algebra g. In doing so we make use of
the fundamental analytic solutions, the Zakharov–Shabat dressing procedure,
the reduction technique and other tools characteristic for that method. The
multicomponent solitons are characterized by several important factors: the
subalgebras of g and the way these subalgebras are embedded in g, the
dimension of the corresponding eigensubspaces of the Lax operator L, as well
as by additional constraints imposed by reductions.

PACS numbers: 05.45.Yv, 02.30.Zz, 02.20.Sv, 02.30.Ik

1. Introduction

Since the time when the inverse scattering transform was invented the number of integrable
nonlinear evolution equations (NLEE) has been increasing significantly [1–3]. There exist
different approaches in analyzing these equations: constructing the spectral theory of the so-
called recursion operators from Lax scattering operators, studying whether there exist higher
order integrals of motion and so on.

Along with the number of integrable equations the diversity of ‘species’ of soliton solutions
has bloomed up: breathers, topological solitons, trapons, boomerons, etc. Thus the analogous
problem of classifying solutions to nonlinear evolution equations and soliton solutions, in
particular, becomes more and more important. It is our opinion that the mentioned problem
is still waiting for its solution. Even for some of the best known NLEE such as the N-wave
equations, the multicomponent nonlinear Schrödinger equations, multicomponent modified
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KdV equations, etc only the simplest types of soliton solutions are known. Our aim is to
outline several criteria for the classification of the soliton solutions.

We use the term ‘soliton solution’ as a special solution to a given NLEE which is solvable
by the inverse scattering method [1–3], i.e. it allows a zero curvature representation

[L(λ),M(λ)] = 0, (1)

where L(λ) and M(λ) are two linear differential operators. In what follows we take them to
be first-order matrix differential operators,

Lψ(x, t, λ) ≡ i∂xψ + U(x, t, λ)ψ(x, t, λ),

Mψ(x, t, λ) ≡ i∂tψ + V (x, t, λ)ψ(x, t, λ).

The soliton solutions are related to a set of several discrete eigenvalues of the Lax operator
L. Therefore one first has to describe all configurations of discrete eigenvalues of L, see [4].
The next step in classifying the types of one-soliton solutions is related to the study of their
internal degrees of freedom.

In order to make the problem not too difficult we will specify L to be the operator for the
generalized Zakharov–Shabat system

L(λ)ψ(x, λ) ≡ i∂xψ + (q(x) − λJ )ψ(x, λ) = 0,

where we take the potential an q(x, t) to be an n × n matrix-valued smooth function of x

tending to zero sufficiently rapid as x → ±∞. We also restrict J to be a real constant diagonal
matrix with different eigenvalues.

For simplicity we consider the class of Lax operators of Zakharov–Shabat type in most
cases with real-valued J . In doing this we will be using the dressing method [5–7], one of
the best known methods for constructing reflectionless potentials and soliton solutions. This
paper is intended as a natural continuation of the work [8] published several years ago by two
of the authors.

In section 2, we outline preliminary facts about the generalized Zakharov–Shabat systems
related to the sl(n) algebras. We also review the basic facts for the sl(2) soliton solutions, and
especially the topological and the breather solutions.

In section 3, we treat the different types of one-soliton solutions for the sl(n) Zakharov–
Shabat systems starting with n = 3. Along with the well-known soliton solutions obtained by
Zakharov and Manakov [9] and Kaup [10] we show that the 3-wave equations with a Z2 × Z2

symmetry allow doublet and quadruplet soliton solutions (analogies to the topological and
breather solutions mentioned above). Next we analyze N-wave equations related to sl(n)

algebra with n = 5; of course nearly all formulae can easily be generalized for any n. Here we
use generic projectors of rank s � 1 and explain why it is enough to consider only s � [n/2]
where [n/2] is the entire part of n/2. We also demonstrate that using special choices for the
polarization vectors defining the projector we can get one-soliton solutions q1s(x, t) taking
values in a subalgebra of sl(n). The simplest nontrivial type of solitons can be related to the
subalgebra sl(2); we call them typical sl(2) solitons. Our next observation is that the sl(2)

subalgebra can be embedded in several different inequivalent ways into sl(5). For example
we can embed a spin J representation of sl(2), J � 2 into sl(5); we call them spin J sl(2)

solitons. The corresponding construction is done by using the corresponding symmetrized
tensor products of the sl(2) dressing factor. The next step is to consider typical sl(3) and sl(4)

solitons. Of course, like for the sl(3) algebra, using additional Z2-symmetries one can obtain
N-wave-type equations allowing doublet and quadruplet solitons.

In section 4, we analyze the structure of the eigenfunctions of L(λ) corresponding to the
different types of solitons.
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In section 5, we discuss the effects of several types of reductions [11] on the different
types of one-soliton solutions. The first Z2-reduction does not affect the spectral parameter λ

and is produced using the exterior automorphism of sl(5). Its effect is that now q(x, t) − λJ

takes values in the subalgebra so(5) ⊂ sl(5). Here we briefly recall the soliton solutions of
the so(5) 4-wave equations we derived in [12]. Next we apply an additional pair of Z2 × Z2

reductions we obtain a 4-wave system allowing doublet and quadruplet solutions. At the end
of this section we analyze the NLEE related to the symmetric spaces [13–15] of BD.I type; the
corresponding J in the Lax pair is dual to the vector e1 in the root space. One easily checks that
for such J the N-wave equations become linear. However there are multicomponent mKdV-
type equations which may be called vector mKdV equations. Such equations have been shown
to possess higher symmetries and have been related to Jordan algebras [16]. The simplest
nontrivial example is a three-component mKdV related to the algebra so(5). We apply an
additional Z2-reduction on it using an automorphism related to a specific Weyl reflection and
obtain a two-component vector mKdV which to the best of our knowledge is new. We end the
section by deriving for it the doublet and quadruplet solutions.

In section 6 we summarize our results and discuss their possible generalizations. In the
appendices, we collect some technical details about the symmetric spaces of BD.I type and
about the spin J representations of sl(2).

2. Preliminaries

2.1. The generalized Zakharov–Shabat system related to sl(n)

In this section, we shall outline some basic features of the mathematical machinery we are
about to use for the classification of soliton solutions.

Integrability or more precisely S-integrability of a NLEE means that the NLEE can be
presented as a zero curvature condition

[L(λ),M(λ)] = 0 (2)

of two first-order linear matrix differential operators L(λ) and M(λ) of the form

Lψ(x, t, λ) ≡ (i∂x + U(x, t, λ))ψ(x, t, λ) = 0, (3)

Mψ(x, t, λ) ≡ (i∂t + V (x, t, λ))ψ(x, t, λ) = ψ(x, t, λ)C(λ). (4)

The potentials U(x, t, λ) and V (x, t, λ) are typically chosen as elements of some semisimple
Lie algebra g (the fundamental solutions ψ(x, t, λ) belong to the corresponding Lie group G).
We shall mainly deal with the algebra sl(n).

Remark 1. The compatibility condition (2) means that the Lax operators L and M possess the
same eigenfunctions. The matrix C(λ) depends on the definition of Jost solutions.

Since the compatibility condition (2) must hold true identically with respect to λ one can
verify that

i∂xV − i∂tU + [U(x, t, λ), V (x, t, λ)] = 0 (5)

and it is valid for any choice of C(λ). For simplicity we shall restrict our considerations on
scattering operators of the Zakharov–Shabat type (GZS)

L(λ)ψ(x, t, λ) ≡ (i∂x + q(x, t) − λJ )ψ(x, t, λ) = 0. (6)

The matrix J is a real traceless diagonal matrix, i.e. a real Cartan element of sl(n), while
q(x, t) is a matrix with zero diagonal elements. Since J is a real matrix one can introduce an
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ordering of its elements J1 > J2 > · · · > Jn. By carrying out a gauge transformation which
commutes with J , we can always take q(x, t) to be of the form q(x, t) = [J,Q(x, t)], i.e.
qjj ≡ 0. The linear subspace in sl(n) of matrix-valued functions q(x, t) = [J,Q(x, t)] is
known in the literature to be the co-adjoint orbit of g passing through J . The co-adjoint orbits
can be supplied in a natural way with a non-degenerate symplectic structure which makes
them natural choices for the phase spaces MJ of the corresponding NLEE.

The class of NLEE related to L(λ) are systems of equations for the multicomponent
functions Q(x, t), which may be written in the compact form [9, 10, 17, 18]

i∂tQ + 2
4∑

k=1

�k[Hk,Q(x, t)] = 0, (7)

where Hk, tr Hk = 0 are constant diagonal matrices and f (λ) = ∑
k=1 λkHk is the dispersion

law of the NLEE. Here and below we define

(ad J X)ks ≡ ([J,X])ks = (Jk − Js)Xks,
(
ad−1

J X
)
ks

= Xks

Jk − Js

, (8)

for all X ∈ MJ , i.e. Xkk = 0. The operator � is either one of the recursion operators �±,
acting on the space MJ of n × n off-diagonal matrix-valued functions as follows:

�±X ≡ ad−1
J

(
i∂xX + P0[q,X] + i

5∑
k=1

[Q,Ek,k]
∫ x

±∞
dy tr([Q,X], Ek,k)

)
. (9)

where P0 is the projector ad−1
J adJ (Ek,k)jl = ∂k,J ∂J,l . Choosing H1 = I = diag(I1, . . . , In) �=

11, so that the dispersion law f (λ) = −λI is a linear function of λ we get a system, generalizing
the well-known N -wave equation

i[J,Qt ] − i[I,Qx] − [[J,Q], [I,Q]] = 0, (10)

which contains N = n(n − 1) complex-valued functions Qij (x, t).
In order to describe the soliton solutions we shall use the so-called dressing procedure

[7]. For that purpose we need some basic facts on the direct scattering problem for L.
Let ψ±(x, t, λ) are two fundamental solutions of the GZS system (6). If they satisfy the

requirement

lim
x→±∞ ψ±(x, t, λ) eiλJx = 11 (11)

they shall be called Jost solutions. The Jost solutions are interrelated via

ψ−(x, t, λ) = ψ+(x, t, λ)T (t, λ), (12)

where T (t, λ) is called a scattering matrix. The scattering matrix is x-independent and its time
evolution is driven by the linear equation

i∂tT + [f (λ), T ] = 0 ⇒ T (t, λ) = eif (λ)tT (0, λ) e−if (λ)t . (13)

Equation (13) shows how one can recover the time evolution of the scattering data. It is used
to solve Cauchy’s problem for NLEE as it is displayed below,

q(t = 0) → L(t = 0) → T (t = 0) → T (t) → L(t) → q(t). (14)

Due to this we shall skip the t-dependence of all functions (potentials, fundamental solutions,
etc) regarding them at a fixed moment t = t0.

The set of matrix elements of T (λ) must satisfy a number of relations. Indeed, they are
uniquely determined by Q(x), i.e. by n(n − 1) complex functions of x, so it seems natural
that there should not be more than n(n − 1) independent functions among Tjk(λ) for λ on
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the real axis. Of course, T (λ) must satisfy the ‘unitarity’ condition det T (λ) = 1. The rest
of these relations follow from the analyticity properties of certain combinations of the matrix
elements of T (λ). These analyticity properties must follow naturally from the corresponding
fundamental analytic solutions (FAS) χ±(x, λ).

The Jost solutions are well defined only for λ ∈ R, i.e. they do not have necessarily
analytic properties beyond the real axis. This can be easily seen if one reformulates the
problem (6) in terms of a Volterra-type integral equation

ξ±(x, λ) = 11 + i
∫ x

±∞
dy eiλJ (y−x)q(y)ξ±(y, λ) eiλJ (x−y), (15)

where ξ±(x, λ) = ψ±(x, λ) eiλJx represents another set of fundamental solutions but this time
to the linear problem

i∂xξ(x, λ) + q(x)ξ(x, λ) − λ[J, ξ(x, λ)] = 0.

It is easy to see that only the first and the last columns of ψ+(x, λ) and ψ−(x, λ) allow
analytic extensions in λ off the real axis; generally the other columns do not have analyticity
properties. Nevertheless it is possible to introduce FAS [3, 19]. Taking into account the
ordering introduced above one is able to construct new fundamental solutions

ξ±
kl (x, λ) =

⎧⎪⎪⎨⎪⎪⎩
δkl + i

∫ x

±∞
dy eiλ(Jk−Jl)(y−x)(qξ±)kl(y, λ), k � l,

i
∫ x

∓∞
dy eiλ(Jk−Jl)(y−x)(qξ±)kl(y, λ), k > l

(16)

to possess analytic properties in the half planes C± of the spectral parameter. This definition
can be rewritten using the Gauss factors of the scattering matrix T

χ±(x, λ) = ψ−(x, λ)S±(λ) = ψ+(x, λ)T∓(λ), (17)

where T (λ) = T
∓(λ)(S±(λ))−1 and χ±(x, λ) = ξ±(x, λ) e−iλJx . The matrix elements of

T
±(λ) and S

±(λ) can be expressed in terms of the minors of T (λ). Here we note that their
diagonal elements can be given by

S
+
jj (λ) = m+

j−1(λ), T
−
jj (λ) = m+

j (λ), (18)

T
+
jj (λ) = m−

n−j (λ), S
−
jj (λ) = m−

n+1−j (λ), (19)

where m±
0 = m±

n = 1 and by m+
k (λ) (resp. m−

k (λ)) we have denoted the upper (resp. lower)
principal minors of T (λ) of order k, e.g.,

m+
k (λ) =

{
1 2 . . . k

1 2 . . . k

}
, k = 1, . . . , n (20)

m−
k (λ) =

{
n − k + 1 n − k + 2 . . . n

n − k + 1 n − k + 2 . . . n

}
T (λ)

, (21)

{
i1 i2 . . . ik

j1 j2 . . . jk

}
T (λ)

≡ det

⎛⎜⎜⎜⎝
Ti1j1 Ti1j2 . . . Ti1jk

Ti2j1 Ti2j2 . . . Ti2jk

...
...

. . .
...

Tikj1 Tikj2 . . . Tikjk

⎞⎟⎟⎟⎠ . (22)

As a consequence of the analyticity of the FAS, it follows that the minors m+
k (λ) (resp.

m−
k (λ)) are analytic functions for λ ∈ C+ (resp. for λ ∈ C−).
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One can construct the kernel of the resolvent of L(λ) in terms of the FAS [17, 18] from
which it follows that the resolvent has poles for all λ±

k which happen to be zeroes of any of
the minors m±

k (λ). Therefore what we have now is that each of the minors m±
k (λ) may be

considered to be an analog of the Evans function, and thus now, there is more than one Evans
function, with each Evans function in a one-to-one correspondence with one of the minors,
m±

k (λ).
There exist different methods to solve a NLEE possessing a Lax representation: Gel’fand–

Levitan–Marchenko integral equation, Hirota method, dressing method, etc. We shall use the
dressing Zakharov–Shabat method [7]. Let ψ0(x, λ) be a fundamental solution of Zakharov–
Shabat’s system with a known potential U0(x, λ) = q0(x) − λJ . Consider a new function
ψ(x, λ) = u(x, λ)ψ0(x, λ) which is a solution to Zakharov–Shabat’s problem with some
potential q(x) − λJ to be found. This requires that u(x, λ) satisfies

i∂xu + qu − uq0 − λ[J, u] = 0. (23)

The dressing procedure transforms the Jost solutions ψ±,0(x, λ), the scattering matrix T0(λ)

and the fundamental solution χ±
0 (x, λ) of the generalized Zakharov–Shabat system with a

potential U0(x, λ) in the following fashion:

ψ±(x, λ) = u(x, λ)ψ±,0(x, λ)u−1
± (λ), (24)

T (λ) = u+(λ)T0(λ)u−1
− (λ), (25)

χ±(x, λ) = u(x, λ)χ±
0 (x, λ)u−1

− (λ). (26)

The normalizing factors u±(λ) = limx→±∞ u(x, λ) ensures the proper asymptotics of the
dressed solutions ψ±(x, λ).

Our aim is by using the structure of the dressing factor to try to classify the soliton
solutions of NLEE. A classical ansatz [3] for u(x, λ) is the following one:

u(x, λ) = 11 + (c(λ) − 1)P (x), c(λ) = λ − λ+

λ − λ− , (27)

where P is a projector (P 2 = P) which can be expressed via the fundamental analytic
solutions (FAS) and λ+ (resp. λ−) is an arbitrary complex number in the upper (resp. lower)
half plane C+ (resp. C−). After applying the dressing procedure λ± become a pair of discrete
eigenvalues for the dressed Lax operator. The projector P(x) determines the corresponding
eigensubspaces—the rank s of P equals the dimension of the eigensubspaces. If we introduce
two sets, each containing s vectors

|n1〉, . . . , |ns〉; 〈m1|, . . . , 〈ms |,
we can write P as follows:

P =
s∑

a,b=1

|na〉M̂ab〈mb|, Mab = 〈ma|nb〉, M̂ ≡ M−1. (28)

Obviously the two sets of vectors are the left and right eigenvectors of P, namely

P |na〉 = |na〉, 〈mb|P = 〈mb|, (29)

for all a, b = 1, . . . , s. In the simplest case when rankP = 1 it reads

P(x) = |n(x)〉〈m(x)|
〈m(x)|n(x)〉 , (30)

where

|n(x)〉 = χ+
0 (x, λ+)|n0〉, 〈m(x)| = 〈m0|(χ−

0 (x, λ−))−1. (31)

6
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By taking the limit λ → ∞ in equation (23) we obtain an interrelation between the seed
solution q0 and the new one

q = q0 + (λ− − λ+)[J, P ]. (32)

Thus starting from a known solution of the NLEE we can find another solution by simply
dressing it with some factor u(x, λ). An important particular case is when q0 = 0. The dressed
solution is called a one-soliton solution. The fundamental analytic solution in the soliton case
is given by a plane wave χ±

0 (x, λ) = exp(−iλJx). Repeating the same procedure one derives
step by step the multisoliton solution of the corresponding NLEE, i.e.,

0 → q1s → q2s → · · · → qns. (33)

Many integrable equations correspond to Lax operators that obey some additional
symmetry conditions of algebraic nature. That is why it is worthwhile to outline some
aspects of the theory of such Lax operators.

Let an action of a discrete group GR to be referred to as a reduction group be given on
the set of fundamental solutions to the generalized Zakharov–Shabat system (6) as follows:

ψ̃(x, λ) = Kψ(x, k(λ))K−1, (34)

where k : C → C is a conformal map. This action yields another action on the potential in
the scattering operator L,

KU(x, k(λ))K−1 = U(x, λ). (35)

A common case is when GR = Z2. Then the action of Z2 might involve external
automorphisms of SL(n) as well,

ψ̃(x, λ) = K(ψT (x, k1(λ)))−1K−1 ⇒ KUT (x, k1(λ))K−1 = −U(x, λ), (36)

ψ̃(x, λ) = Kψ∗(x, k2(λ))K−1 ⇒ KU ∗(x, k2(λ))K−1 = −U(x, λ). (37)

In particular, if Z2 acts trivially on the complex plane of the spectral parameter, i.e. k = id,
then the symmetry condition (36) may restricts the potential U(x, λ) to a certain subalgebra of
sl(n). For example, suppose KT = S0K̂Ŝ0 then U(x, λ) belongs to the orthogonal algebra3

so(n). The existence of a Z2 reduction requires a modification of the dressing factor u(x, λ)

as follows:

u(x, λ) = 11 + (c(λ) − 1)P (x) +

(
1

c(λ)
− 1

)
P(x), (38)

where P(x) is a projector of rank 1,

P(x) = |n(x)〉〈m(x)|
〈m(x)|n(x)〉 , P (x) = KS0P

T (x)S−1
0 K−1. (39)

The projector itself can be expressed through the FAS χ±(x, λ),

|n(x)〉 = χ+
0 (x, λ+)|n0〉, 〈m(x)| = 〈m0|(χ−

0 (x, λ−))−1. (40)

3 Here we use a slightly modified definition of the orthogonal algebras, see appendix A where the definition and the
explicit form of the matrix S0 are given.

7
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2.2. The Zakharov–Shabat system and sl(2) solitons

The best known examples of NLEE are related to the Zakharov–Shabat system which is
associated with the sl(2) algebra as follows:

Lψ(x, t, λ) ≡ (i∂x + q(x, t) − λσ3)ψ(x, t, λ),
(41)

q(x, t) = q+σ+ + q−σ− =
(

0 q+

q− 0

)
,

where σ± = (σ1 ± iσ2)/2 and σ1, σ2 and σ3 are the Pauli matrices.
The class of NLEE for the functions q±(x, t) related to (41) can be written in the compact

form [20–22],

iσ3∂tq + 2f (�)q(x, t) = 0, (42)

where f (λ) is the dispersion law of the NLEE and � is one of the recursion operators, acting
on the space M0 of off-diagonal matrix-valued functions as follows:

�±X ≡ i

4
[σ3, ∂xX] +

i

2
q(x)

∫ x

±∞
dy tr(q(y), [σ3, X(y)]). (43)

The simplest nontrivial example of NLEE is related to a dispersion law of the type
f (λ) = −2λ2. This is the nonlinear Schrödinger equation

iq+
t + q+

xx + 2(q+(x, t))2q−(x, t) = 0,
(44)

iq−
t − q−

xx − 2(q−(x, t))2q+(x, t) = 0.

Another well-known example is provided by a cubic dispersion law f (λ) = 4λ3, one gets the
system

q+
t + q+

xxx + 6q+(t)q−(x, t)q+
x = 0,

(45)
q−

t + q−
xx + 6q−(x, t)q+(x, t)q−

x = 0,

directly linking to the Korteweg de Vries equation.
As we discussed in the previous section the scattering theory is based on introducing Jost

solutions of L(λ), scattering matrix, fundamental solutions, etc. In the sl(2) case the Jost
solutions are 2 × 2 matrix-valued solutions defined by an analog of (11) where the matrix J

is simply substituted by σ3. Then one introduces the scattering matrix T (λ, t) by

T (λ, t) ≡ (ψ+(x, t, λ))−1ψ−(x, t, λ) =
(

a+(λ) −b−(λ, t)

b+(λ, t) a−(λ)

)
, (46)

which is x-independent. The t-dependence of the scattering matrix is driven by

i∂tT + [f (λ)σ3, T (λ, t)] = 0. (47)

Thus, if q±(x, t) satisfy the system of equations (42) we get

∂ta
±(λ) = 0, i∂tb

±(λ) ∓ 2f (λ)b±(λ) = 0. (48)

The matrix elements of T (λ, t) are not independent. They satisfy the ‘unitarity’ condition
det T (λ) ≡ a+a− + b+b− = 1. Besides the diagonal elements a+ and a− allow analytic
extension with respect to λ in the upper and lower complex λ-plane respectively. In fact the
minimal set of scattering data which uniquely determines both the scattering matrix and the
corresponding potential q(x) consists of two types of variables: (i) the reflection coefficients
ρ±(λ) = b±/a± defined for real λ ∈ R and (ii) a discrete set of scattering data including
the discrete eigenvalues λ±

k ∈ C± and the constants C±
k which determine the norm of the

corresponding Jost solutions [23].

8
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A simple analysis shows that the first column of ψ+ allows analytic continuation in the
lower half plane of the spectral parameter while the last one in the upper half plane (for ψ−
the opposite holds true)

ψ+(x, t, λ) = ∣∣ψ−
+ , ψ+

+

∣∣, ψ−(x, t, λ) = ∣∣ψ+
−, ψ−

−
∣∣. (49)

The superscripts ± in the columns of the Jost solutions refer to their analyticity properties while
the subscripts ± refer to different Jost solutions (with different limits of x). The fundamental
analytic solutions are constructed in the following manner:

χ+(x, t, λ) = ∣∣ψ+
−, ψ+

+

∣∣, χ−(x, t, λ) = ∣∣ψ−
+ , ψ−

−
∣∣. (50)

The functions a±(λ) = det χ±(x, λ) are known as the Evans functions [6, 24] of the
system L(λ). Their importance comes from the fact that they are t-independent (see (48)), and
therefore they (or rather ln a±) can be viewed as generating functionals of the (local) integrals
of motion. In addition it is known that their zeroes determine the discrete eigenvalues of L(λ),

a+
(
λ+

k

) = 0, λ+
k ∈ C+; a−(

λ−
k

) = 0, λ−
k ∈ C−. (51)

One can define the soliton solutions of the NLEE as those for which ρ±(λ) = 0 for all
λ ∈ R. Thus the soliton solutions of (42) are parametrized by the discrete eigenvalues and the
constants C±

k whose t-dependence is determined from

dλ±
k

dt
= 0, i

dC±
k

dt
∓ 2f ±

k C±
k = 0, f ±

k = f
(
λ±

k

)
. (52)

In fact we will analyze the various possible types of one-soliton solutions; in our case
they are determined by one pair of discrete eigenvalues λ± ∈ C± and one pair of norming
constants C±. Thus for (42) we get just one type of one-soliton solutions. In order to derive its
explicit form we shall use the dressing Zakharov–Shabat method [7]. In our case the dressing
factor u(x, t, λ) is given by a 2 × 2 matrix of the form (27) where P is a projector of rank 1
(see (30)). Then the following relations hold

P |n(x, t)〉 = |n(x, t)〉, |n(x, t)〉 =
(

n1(x, t)

n2(x, t)

)
, (53)

〈m(x, t)|P(x, t) = 〈m(x, t)|, 〈m(x, t)| = (m1(x, t),m2(x, t)) . (54)

The transmission coefficients are transformed by the dressing procedure as follows:

a+(λ) = c(λ)a+
0 (λ), a−(λ) = a−

0 (λ)

c(λ)
. (55)

The sl(2) analog of (32) reads

q(x, t) − q0(x, t) = −(λ+ − λ−)[σ3, P (x, t)]. (56)

By applying the above formulae to properly chosen constant vectors |n0〉 and 〈m0| we can
construct the eigenvectors of P(x, t) and as a result, obtain P(x, t) explicitly. It then remains
only to insert it into (56) in order to obtain the corresponding potential q(x, t) explicitly. It
can be proved that the spectrum of L(λ) will differ from the spectrum of L0(λ) only by an
additional pair of discrete eigenvalues located at λ± ∈ C±.

A pure soliton solution is obtained by assuming q0(x, t) = 0; as a result we have

|n(x, t)〉 = e−i(xλ++f +t)σ3 |n0〉, 〈m(x, t)| = 〈m0| ei(xλ−−f −t)σ3 ,

P (x, t) = 1

2 cosh 
0(x, t)

(
e
0(x,t) κ2 e−i
(x,t)

1
κ2

ei
(x,t) e−
0(x,t)

)
(57)


0(x, t) = −i(λ+ − λ−)x + i(f + − f −)t − ln κ1,


(x, t) = (λ+ + λ−)x − (f + + f −)t,

9
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where f ± and the constants κ1 and κ2 are given by

f ± = f (λ±), κ1 =
√

n0,1m0,1

n0,2m0,2
, κ2 =

√
n0,1m0,2

n0,2m0,1
. (58)

Then the corresponding one-soliton solution takes the form

q+(x, t) = −κ2(λ
+ − λ−) e−i
(x,t)

cosh 
0(x, t)
, q−(x, t) = κ2(λ

+ − λ−) ei
(x,t)

κ2 cosh 
0(x, t)
. (59)

Remark 2. The eigenvalues λ± are two independent complex numbers; therefore, in the
denominator in (57) we get cosh of complex argument. This function vanishes whenever its
argument becomes equal to i(π/2 + pπ) for some integer p and the generic solitons of (42)
may have singularities for finite x and t .

One way to avoid these singularities is to impose on the Zakharov–Shabat system an
involution, i.e. if we constrain the potential q0(x, t) by

q(x, t) = q†(x, t), i.e. q+ = (q−)∗ = u(x, t). (60)

Such constraint reduces (42) to NLEE for the single function u(x, t); the second equation
of the system becomes consequence of the first one. As a result (44) becomes the NLS
equation

iut + uxx + 2|u|2u(x, t) = 0, (61)

while (45) goes into the MKdV-type equation

ut + uxxx + 6|u(x, t)|2ux = 0. (62)

This involution imposes constraints on all the scattering data; in particular we have

a+(λ) = (a−(λ∗))∗, b+(λ) = (b−(λ∗))∗. (63)

From the first relation above we find that the zeroes of the functions a±(λ) which are the
eigenvalues of L0(λ) must satisfy

λ+ = (λ−)∗ = µ + iν, C+ = (C−)∗, P (x, t) = P †(x, t). (64)

So now the one-soliton solution corresponds to a pair of eigenvalues which must be mutually
conjugated pairs.

As a result we find that the expression for P(x, t) and the one for the one-soliton solution
simplifies to

P(x, t) = 1

2 cosh 
00(x, t)

(
e
00(x,t) e−i
01(x,t)

ei
01(x,t) e−
00(x,t)

)

00(x, t) = 2νx − 2ht − ln

∣∣∣∣n1
0

n2
0

∣∣∣∣ ,


01(x, t) = 2µx − 2gt − arg n1
0 + arg n2

0, (65)

where

λ± = µ ± iν, f ± = g ± ih. (66)

Now both functions 
00(x, t) and 
01(x, t) become real valued. The denominator now
becomes cosh of real argument, so this soliton solution is regular function for all x and t .

One can impose on q0(x, t) a different involution

q(x, t) = −q†(x, t), i.e. q+ = −(q−)∗ = u(x, t). (67)

10
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However it is well known that under this involution the Zakharov–Shabat system L(λ) becomes
equivalent to an eigenvalue problem

Lψ(x, t, λ) ≡ iσ3∂xψ + σ3q(x, t)ψ(x, t, λ) = λψ(x, t, λ), (68)

where the operator L is a self-adjoint one, so its spectrum must be on the real λ-axis. But the
continuous spectrum of L fills up the whole real λ-axis, which leaves no room for solitons.

Finally, the Zakharov–Shabat system can be restricted by a third involution, e.g.,

q(x, t) = −qT (x, t), i.e. q+ = −q− = −iwx. (69)

Such involution is compatible only with those NLEE whose dispersion law is odd function
f (λ) = −f (−λ). Therefore it cannot be applied to the NLS equation; applied to the MKdV
equation it gives

wxt + wxxxx + 6(wx(x, t))2wxx = 0, (70)

which can be integrated ones with the result v = wx ,

vt + vxxx + 6(v(x, t))2vx = 0, (71)

i.e. we get the MKdV equation for the real-valued function v(x, t). It is well known also that
the NLEE with dispersion law f (λ) = (2λ)−1 can be explicitly derived under this reduction
and comes out to be the famous sine-Gordon equation [25]

wxt + sin(2w(x, t)) = 0. (72)

This second involution can be imposed together with the one in (60). The restrictions that
it imposes on the scattering data are as follows:

a+(λ) = (a−(λ∗))∗, a+(λ) = (a−(−λ)). (73)

Now if λ+ is an eigenvalue of L(λ) then (λ+)∗,−λ+ and −(λ+)∗ must also be eigenvalues.
This means that we can have two configurations of eigenvalues:

(i) pairs of purely imaginary eigenvalues

λ+ = iν ≡ −(λ+)∗, λ− = −iν ≡ −(λ−)∗; (74)

(ii) quadruplets of complex eigenvalues

λ+ = µ + iν −(λ+)∗ = −µ + iν,
(75)

λ− = µ − iν, −(λ−)∗ = −µ − iν.

Thus we conclude, that the sine-Gordon and MKdV equations allow two types of solitons:
type 1 with purely imaginary pairs of eigenvalues and type 2 each corresponding to a quadruplet
of eigenvalues. Type 1 solitons are known also as topological solitons, or kinks (for details see
[2]). They are parametrized by two real parameters: ν and |C+| so they have just one degree
of freedom corresponding to the uniform motion.

Type 2 solitons are known as the breathers and are parametrized by four real parameters:
µ and ν and the real and imaginary parts of C+. Therefore they have two degrees of freedom:
one corresponds to the uniform motion and the second one describes the internal degree of
freedom responsible for the ‘breathing’.

The purpose of presenting the above well-known facts in the above manner was simply to
make it clear that the structure, as well as the number of related parameters which determine
what different types of solitons can exist, depend strongly on the type of, and the number of,
different involutions that can be imposed on the system.

11
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3. The Generalized Zakharov–Shabat system and sl(n) solitons

3.1. N-wave system related to sl(3)

In this subsection, we start with the generic N-wave system related to sl(3) and analyze its
reductions. The one-soliton solutions for the generic case and for the typical reductions are
well known [9, 10]. Next we impose Z2 and Z2 × Z2 reductions and derive the corresponding
one-soliton solutions. Below we will use a notation which exploits the root structure of sl(3),
namely Qknk, n = 1, 2 stands for the component of Q associated with the root α = kα1 + nα2

expanded over the simple roots α1 = e1 − e2 and α2 = e2 − e3. Taking into account that
convention the generic N-wave system for sl(3) consists of six equations; the first three of
them are given by

i(J1 − J2)Q10,t − i(I1 − I2)Q10,x + 3kQ11Q01 = 0, (76)

i(J1 − J3)Q11,t − i(I1 − I3)Q11,x − 3kQ10Q01 = 0, (77)

i(J2 − J3)Q01,t − i(I2 − I3)Q01,x + 3kQ10Q11 = 0; (78)

the other three equations are obtained from (76) by replacing Jk ↔ −Jk, Ik ↔ −Ik and
Qkn ↔ Qkn. We recall that

∑3
k=1 Jk = 0,

∑3
k=1 Ik = 0 and k = J1I2 − I1J2. This system

can be solved via a standard dressing procedure [7, 9] with the dressing factor (27). The
one-soliton solution obtained that way is given by the following expressions:

Q10(x, t) = λ− − λ+

〈m|n〉 e−i(λ+z1−λ−z2)n0,1m0,2,

Q11(x, t) = λ− − λ+

〈m|n〉 e−i(λ+z1−λ−z3)n0,1m0,3, (79)

Q01(x, t) = λ− − λ+

〈m|n〉 e−i(λ+z2−λ−z3n0,2m0,3,

where zσ = Jσ x + Iσ t and

〈m|n〉 =
3∑

j=1

e−i(λ+−λ−)zj n0,jm0,j . (80)

The expressions for the other three fields can be derived from these by executing the following
changes Qkn ↔ Qkn, eiλ+zj ↔ e−iλ−zj , n0,j ↔ m0,j .

Next we consider the typical Z2 reductions of the type

K1U
†(x, λ∗)K−1

1 = U(x, λ), ⇒ K1J
∗K−1

1 = J, K1Q
†K−1

1 = −Q, (81)

where K1 = diag(ε1, ε2, ε3), ε
2
j = 1, is an element of the Cartan subgroup H ⊂ SL(3) which

represents an action of Z2. This results in reducing the number of independent fields since we
have

Q10 = −ε1ε2Q
∗
10, Q11 = −ε1ε3Q

∗
11, Q01 = −ε2ε3Q

∗
01

and therefore the number of equations reduces from 6 to 3 as follows:

i(J1 − J2)Q10,t − i(I1 − I2)Q10,x − 3kε2ε3Q11Q
∗
01 = 0, (82)

i(J1 − J3)Q11,t − i(I1 − I3)Q11,x − 3kQ10Q01 = 0, (83)

i(J2 − J3)Q01,t − i(I2 − I3)Q01,x − 3kε1ε2Q
∗
10Q11 = 0. (84)

12
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The discrete eigenvalues of Z2-reduced operator L are complex conjugated, i.e. λ− =
(λ+)∗ = µ − iν and the polarization vectors are interrelated via |n〉 = K1|m〉∗. The one-
soliton solution in this case is

Q10(x, t) = −2iν eν(z1+z2)

〈n∗|K1|n〉 e−iµ(z1−z2)n0,1ε2n
∗
0,2, (85)

Q11(x, t) = − 2iν e−νz2

〈n∗|K1|n〉 e−iµ(z1−z3)n0,1ε3n
∗
0,3, (86)

Q01(x, t) = − 2iν e−νz1

〈n∗|K1|n〉 e−iµ(z2−z3)n0,2ε3n
∗
0,3. (87)

Remark 3. In general, the denominator (80) of the expressions for the one-soliton solution
can possesses zeros for some x and t, i.e. we have singular solitons. The same holds true
also for the 3-wave system with the typical involutions for which K �= 11. This is directly
related to the well-known ‘blow-up’ instability [9]. For the typical involution with K1 = 11
the corresponding denominator is a sum real-valued exponentials multiplied by some positive
factors which is always positive.

By imposing another Z2 reduction on the potential U(x, λ), namely

K2U
T (x,−λ)K−1

2 = −U(x, λ), K2J
T K−1

2 = J, K2Q
T K−1

2 = Q, (88)

where K2 ∈ H satisfies [K1,K2] = 0 we obtain a Z2 × Z2-reduced sl(3)N -wave system.
As a consequence we have a pair of purely imaginary eigenvalues λ± = ± iν. Choosing
K1 = K2 = 11 we see that the three independent fields Q10(x, t),Q01(x, t) and Q11(x, t)

are purely imaginary while the polarization vector is real, |n〉∗ = |n〉. After introducing new
variables

Q10(x, t) = iq10(x, t), Q01(x, t) = iq01(x, t), Q11(x, t) = iq11(x, t),

we derive a real 3-wave system for three real-valued fields

(J1 − J2)q10,t − (I1 − I2)q10,x + 3kq11q01 = 0,

(J1 − J3)q11,t − (I1 − I3)q11,x − 3kq10q01 = 0, (89)

(J2 − J3)q01,t − (I2 − I3)q01,x + 3kq10q11 = 0.

Since the dressing factor must satisfy the conditions

(u†(x, λ∗))−1 = u(x, λ), (90)

(uT (x,−λ))−1 = u(x, λ), (91)

the projector P is real valued. In this case the discrete eigenvalues are purely imaginary, i.e.
λ± = ±iν. The one-soliton solution is

q1s
kl (x) = −2νPkl(x), P = |n〉〈n|

〈n|n〉 , k �= l.

Taking into account that |n〉 = eνJx |n0〉 we derive explicitly the following result:

q10(x, t) = − 2ν eν(z1+z2)n0,1n0,2

e2νz1n2
0,1 + e2νz2n2

0,2 + e−2ν(z1+z2)n2
0,3

,

q11(x, t) = − 2ν e−νz2n0,1n0,3

e2νz1n2
0,1 + e2νz2n2

0,2 + e−2ν(z1+z2)n2
0,3

,

q01(x, t) = − 2ν e−νz1n0,2n0,3

e2νz1n2
0,1 + e2νz2n2

0,2 + e−2ν(z1+z2)n2
0,3

.

(92)
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In the Z2 ×Z2 case there exists another type of soliton solutions—these obtained by using
a dressing factor of the form

u(x, λ) = 11 + (c(λ) − 1)A(x) +

(
1

c(−λ)
− 1

)
B(x), c(λ) = λ − λ+

λ − λ− , (93)

while its inverse reads

u−1(x, λ) = 11 +

(
1

c(λ)
− 1

)
C(x) + (c(−λ) − 1)D(x). (94)

These solutions are associated with four discrete eigenvalues of the scattering operator L:
±λ±. In this sense they may be called quadruplet solitons unlike the solutions (92) which
being associated with two eigenvalues ±iν represent doublet solitons. The dressing factor
(93) is Z2 × Z2 invariant if the conditions hold true

K1(u
†(x, λ∗))−1K−1

1 = u(x, λ), (95)

K2(u
T (x,−λ))−1K−1

2 = u(x, λ). (96)

Hence the following relations hold:

B = K1K2A
∗K−1

2 K−1
1 , C = K1A

†K−1
1 , D = K2A

T K−1
2 , (97)

as well as λ− = (λ+)∗ = µ − iν.
The matrix-valued function A admits the decomposition

A(x) = X(x)F T (x). (98)

By using the equality uu−1 = 11 one can prove that the factor X(x) can be expressed by F(x)

as follows:

X = 1

a2 − |b|2 (aK1F
∗ − b∗K2F), (99)

where

a = F †K1F, b = − iνF T K2F

µ − iν
, F T (x) = FT

0 (χ−
0 (x, λ−))−1. (100)

To find the one-soliton solution we take the limit λ → ∞ in (23) and put q0 ≡ 0. Thus we
obtain the following formula:

Q1s
jk = (λ− − λ+)(A + K1K2A

∗K2K1)jk, j �= k. (101)

Let K1 = K2 = 11. Then Q∗ = −Q and using the above notation we have for the one-soliton
solution:

q10 = −4ν

�
f12

3∑
k=1

fkk

{
cos(φ1 − φ2) − ν cos(2φk − φ1 − φ2 + φ0)√

µ2 + ν2

}
, (102)

q11 = −4ν

�
f13

3∑
k=1

fkk

{
cos(φ1 − φ3) − ν cos(2φk − φ1 − φ3 + φ0)√

µ2 + ν2

}
, (103)

q01 = −4ν

�
f23

3∑
k=1

fkk

{
cos(φ2 − φ3) − ν cos(2φk − φ2 − φ3 + φ0)√

µ2 + ν2

}
,

� = a2 − |b|2 = 1

µ2 + ν2

⎧⎨⎩µ2
3∑

k=1

f 2
kk + 2

∑
k<p

f 2
kp[µ2 + 2ν2 sin2(φk − φp)]

⎫⎬⎭ , (104)

fjk = |F0,jF0,k| eν(zj +zk), φk(x, t) = µzk + δk, δk = arg F0,k,

where λ+ = i
√

µ2 + ν2 eiφ0 .
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3.2. N-wave systems related to sl(n), n > 3

For the sake of simplicity and clarity below, most of our discussions will be restricted to the
case n = 5 and rank-1 projectors P. They also could easily be reformulated for any other
chosen value of n and for higher rank projectors. The corresponding Lax operator L(λ) which
is a particular case of (3) with

L ≡ i∂x + U(x, t, λ) = i∂x + [J,Q(x, t)] − λJ,

J = diag(J1, J2, J3, J4, J5), Q(x, t) =

⎛⎜⎜⎜⎜⎝
0 Q12 Q13 Q14 Q15

Q21 0 Q23 Q24 Q25

Q31 Q32 0 Q34 Q35

Q41 Q42 Q43 0 Q45

Q51 Q52 Q53 Q54 0

⎞⎟⎟⎟⎟⎠ .

Furthermore, for definiteness we will assume that

tr J = 0, J1 > J2 > J3 > 0, 0 > J4 > J5. (106)

The M-operator in the Lax representation for the N -wave equation (10) is given by

Mψ(x, t, λ) ≡ i∂tψ + ([I,Q(x, t)] − λI)ψ(x, t, λ) = −λψ(x, t, λ)I, (107)

where I = diag(I1, . . . , I5) is a traceless matrix. The generic one-soliton solution can be
derived by using (32),

q(x) = lim
λ→∞

λ(J − u(x, λ)Ju−1(x, λ)) = −(λ+ − λ−)[J, P (x)], (108)

with a generic projector P whose rank s can be bigger than 1,

P(x, t) =
s∑

a,b=1

|na(x, t)〉M−1
ab

〈
n
†
b(x, t)

∣∣, Mab(x, t) = 〈
n
†
b(x, t)

∣∣na(x, t)
〉
,

(109)
|na(x, t)〉 = χ+

0 (x, t, λ+)|n0,a〉, 〈n0,a|S0|n0,b〉 = 0.

Note that the set of s linearly independent polarization vectors |nk〉 determine the
corresponding eigensubspace of L. Such subspace can be defined either as the image of P
or as the kernel of the projector P̃ = 11 − P which is defined by a complimentary set of n − s

polarization vectors. Therefore studying sl(n)-type Zakharov–Shabat systems it is enough to
analyze projectors of rank s � [n/2], where [n/2] is the entire part of n/2. Thus for n = 3 it
is enough to study rank-1 projectors, while for n = 5 one needs also rank-2 projectors.

For s = 2 we have two linearly independent polarization vectors |na〉, a = 1, 2 and from
(109) we get

P(x, t) = 1

det M

(|n1(x, t)〉M22
〈
n
†
1(x, t)

∣∣ − ∣∣n2(x, t)
〉
M12

〈
n
†
1(x, t)

∣∣
− |n1(x, t)〉M21

〈
n
†
2(x, t)

∣∣ +
∣∣n2(x, t)

〉
M11

〈
n
†
2(x, t)

∣∣),
det M(x, t) = M11M22 − M12M21, Mab(x, t) = 〈

n†
a(x, t)

∣∣nb(x, t)
〉
. (110)

Let first concentrate on rank-1 projectors, see (93) with

|n(x)〉 = χ+
0 (x, λ+)|n0〉, 〈m(x)| = 〈m0|χ̂−

0 (x, λ−). (111)

The polarization vectors |n0〉 and 〈m0| are constant 5-vectors. Thus these type of one-soliton
solutions is parametrized by:

(i) The discrete eigenvalues λ± = µ±± iν±; µ± determine the soliton velocity, ν± determine
the amplitude.
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(ii) The ‘polarization’ vectors |n0〉, 〈m0| parametrize the internal degrees of freedom of the
soliton. Note that P(x) is invariant under the scaling of each of these vectors. Generically
each ‘polarization’ has five components, one of which can be fixed, say to 1. So each
‘polarization’ is determined by four independent complex parameters.
We have several options that will lead to different types of solitons:
(1) generic case when all components of |n0〉 are non-vanishing;
(2) several special subcases when one (or several) of these components vanish. The

corresponding solitons will have different structures and properties.

For the generic choice of |n0〉 one finds

lim
x→±∞ P(x, t) = P±, P+ = E11, P− = Enn, (112)

where the matrix Ekj has only one non-vanishing matrix element equal to 1 at position k, j ,
i.e. (Ekj )mp = δkmδjp. Therefore both the limiting values u±(λ) and their inverse û±(λ) are
diagonal matrices

u+(λ) = diag(c(λ), 1, 1, . . . , 1), u−(λ) = diag(1, 1, . . . , 1, c(λ)). (113)

From (25) for n = 5 we have

T1j (λ) = c(λ)(T0)1j (λ), j = 1, 2, 3, 4;
(114)

Tj5(λ) = (T0)j5(λ)/c(λ), j = 2, 3, 4, 5;
Tij (λ) = (T0)ij (λ), for all other values of i, j . (115)

This relation allows us to derive the interrelations between the Gauss factors of T0(λ) and
T (λ). In particular we find for the principal minors of T (λ),

m+
k (λ) = c(λ)m+

0,k(λ), m−
k (λ) = m−

0,k(λ)/c(λ), (116)

where m+
k (λ) (resp. m−

k (λ)) are the upper (resp. lower) principal minors of T (λ). Since
χ±

0 (x, t, λ) are regular solutions of the RHP then m±
0,k(λ) have no zeroes at all, but (116)

means all m±
k (λ) have a simple zero at λ = λ±.

The generic one-soliton solution then is obtained by taking χ±(x, t, λ) = exp(−iλJx).
As a result we get

(P (x, t))ks = 1

k(x, t)
n0,km0,s e−i(λ+zk−λ−zs ), (117)

k(x, t) =
n∑

p=1

n0,pm0,p e−i(λ+−λ−)zp(x,t), (118)

zp(x, t) = Jpx + Ipt, q1s
ks = −(λ+ − λ−)(P (x, t))ks, (119)

i.e. in all channels we have nontrivial waves. The number of internal degrees of freedom is
2(n − 1) = 8. Note that the denominator k(x, t) is a linear combination of exponentials with
complex arguments, so it could vanish for certain values of x, t . Thus the generic soliton (117)
in this case is a singular solution.

Next we impose on U(x, t, λ) the involution

KU †(x, t, λ∗)K−1 = U(x, t, λ), K = diag(ε1, . . . , εn), (120)

with εj = ±1. More specifically this means that

Kq†(x, t)K−1 = q(x, t), Ku†(x, t, λ∗)K−1 = u−1(x, t, λ), (121)
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and

λ+ = (λ−)∗ = µ + iν, 〈m0| = (K|n0〉)†. (122)

Thus only |n0〉 is independent.
Then the one-soliton solution simplifies to

q1s
ks (x, t) = −2iν(Jk − Js)

kred(x, t)
εsn0,kn

∗
0,s eν(zk+zs ) e−iµ(zk−zs ), (123)

kred(x, t) =
n∑

p=1

εp|n0,p|2 e2νzp(x,t). (124)

The number of internal degrees of freedom now is n−1 = 4. If one or more of εj are different,
then this reduced soliton may still have singularities. The singularities are absent only if all
εj are equal.

The analysis of solitons obtained with rank-2 projectors should go along the same lines.
It is lengthier than the one above and we may omit it. We just note that even with the canonical
reduction with K = 11 in (121), one cannot guarantee that det M > 0 for all x and t (see (110))
which means that one may encounter singular solitons.

3.3. Typical sl(2) solitons

The finite-dimensional irreducible representations of the algebra sl(2) are labeled by their spin
J and have dimension 2J + 1; the spin J can take half-integer positive values. The simplest
representation with J = 1

2 is two dimensional and is known also as the typical representation of
sl(2). In this subsection, we will address first the simplest possibility when sl(2) is embedded
into sl(5) via its typical representation; we will call such solitons typical sl(2) solitons.

From now on we assume that the reduction (120) with εp = 1 holds. Here |n0,1〉 has
only two non-vanishing components. We consider here three examples with n = 5 and three
different choices for the polarization vectors

(a) |n0〉 =

⎛⎜⎜⎜⎜⎝
n0,1

0
0
0

n0,5

⎞⎟⎟⎟⎟⎠ ; (b) |n0〉 =

⎛⎜⎜⎜⎜⎝
0

n0,2

0
n0,4

0

⎞⎟⎟⎟⎟⎠ ; (c) |n0〉 =

⎛⎜⎜⎜⎜⎝
n0,1

n0,2

0
0
0

⎞⎟⎟⎟⎟⎠ . (125)

In all these cases the corresponding one-soliton solutions q(x, t) are given by similar analytic
expressions, each having only two non-vanishing matrix elements

qjk(x, t) = (qjk(x, t))∗ = − iν(Jj − Jk) ei(arg(n0,j )−arg(n0,k )) e−iµ(Jj −Jk)(x+wjkt)

cosh[ν(Jj − Jk)(x + wjkt) + ln|n0,j | − ln|n0,k|] , (126)

where we recall that wjk = (Ij − Ik)/(Jj − Jk), j < k. For case (a) we have j = 1, k = 5;
in case (b): j = 2, k = 4 and in case (c) j = 1 and k = 2.

The sl(2) soliton is very much like the NLS soliton (apart from the t-dependence); the
NLS soliton has only one internal degree of freedom.

The different choices for the polarization vector result in different asymptotics for the
projector P1(x),

(a) lim
x→∞ P(x) = E11, lim

x→−∞ P(x) = E55,

(b) lim
x→∞ P(x) = E22, lim

x→−∞ P(x) = E44, (127)

(c) lim
x→∞ P(x) = E11, lim

x→−∞ P(x) = E22.
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In case (a) the results for the limits of P(x) and for u±(λ) are the same as for the generic
case, see (112) and (113). As a consequence, such sl(2) solitons require the vanishing of all
Evans functions m±

k (λ) for λ = λ±, see (116).
In case (b) from (25) and from the appendices we get that such sl(2) soliton provides for

the vanishing of m±
2 (λ) and m±

3 (λ),

m+
2(λ) = c(λ)m+

0,2(λ), m+
3(λ) = c(λ)m+

0,3(λ),
(128)

m−
2 (λ) = m−

0,2(λ)/c(λ), m−
3 (λ) = m−

0,3(λ)/c(λ),

whereas m±
1 (λ) = m±

0,1(λ) and m±
4 (λ) = m±

0,4(λ) remain regular and do not have zeros at
λ = λ±.

Likewise in case (c) we get that only m+
1(λ) and m−

4 (λ) acquire zeroes,

m+
1(λ) = c(λ)m+

0,1(λ), m−
4 (λ) = m−

0,4(λ)/c(λ), (129)

and all the other Evans functions m+
j (λ) with j = 2, 3, 4, and m−

p (λ) with p = 1, 2, 3 do not
have zeroes.

3.4. Higher spin J sl(2) solitons

Here we provide some examples of sl(2) soliton solutions which are embedded into sl(5)

via a higher (2J + 1)-dimensional representation of sl(2) which we call spin J sl(2) solitons.
Obviously for g  sl(5) the ‘spin’ of the solitons can take values J = 1, 3/2 and 2.

It is well known that spin J representation can be constructed using the completely
symmetrized tensor products of the typical 2×2 representation. The details of their derivations
are given in appendix B. Here we briefly formulate the results.

Before starting with to calculate symmetrized tensor products of the dressing factor we
have to make a slight modification so that it takes values in the group SL(2). Indeed, as it is
given by (27) and (65) one easily checks that det u(x, λ) = c(λ). Therefore we multiply it by
the constant 1/

√
c(λ) factor so that its determinant equals 1. Thus we can rewrite the dressing

factor for the typical sl(2) soliton in the form

u(x, λ) =
√

c(λ)P (x) +
1√
c(λ)

P̄ (x), (130)

where P̄ = 11 − P ; in terms of the polarization vectors they take the form

P = 1

n1m1 + n2m2

(
n1m1 n1m2

n2m1 n2m2

)
, P̄ = 1

n1m1 + n2m2

(
n2m2 −n1m2

−n2m1 n1m1

)
. (131)

After some calculations we get the following results for the higher spin dressing factors:

U(3) ≡ u � u = c(λ)π
(3)
1 + π

(3)
0 +

1

c(λ)
π

(3)
−1 ,

U(4) ≡ u � u � u =
3/2∑

l=−3/2

π
(4)
l cl(λ),

U(5) ≡ u � u � u � u =
2∑

l=−2

π
(5)
l cl(λ).

(132)

By u�u, u�u�u, etc we have denoted the completely symmetrized part of the corresponding
tensor powers of the dressing factor u(x, λ), the superscript k of U(k) denotes the dimension
2J + 1 of the representation. By π(k)

a we have denoted mutually orthogonal rank-1 projectors

π(k)
a =

∣∣N(k)
a

〉〈
M(k)

a

∣∣〈
M

(k)
a

∣∣N(k)
a

〉 , π(k)
a π

(k)
b = δabπ

(k)
a . (133)
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The explicit expressions for the vectors
∣∣N(k)

a

〉
and

〈
M(k)

a

∣∣ in terms of ni and mj are given in
appendix A. Here we just mention that〈

M(k)
a

∣∣ = 〈
N(k)

a

∣∣S(k)
0 , (134)

where the matrices S
(k)
0

S
(k)
0 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k∑
s=0

(−1)k+1E
(k)
s,k+1−s for k = 2p + 1

(k−1)/2∑
s=0

(−1)k+1
(
E

(k)
s,k+1−s − E

(k)
k+1−s,s

)
for k = 2p

(135)

are the ones used to define the orthogonal algebras so(k).
All these properties of the projectors π(k)

a allow us to rewrite the dressing factors in the
form

U(k)(x, λ) = exp

(
ln c(λ)

(k−1)/2∑
s=1

(
π(k)

s − π
(k)
−s

)
+ π

(k)
0

)
, (136)

for odd values of k and

U(k)(x, λ) = exp

⎛⎝ln c(λ)

(k−1)/2∑
s=1/2

(
π(k)

s − π
(k)
−s

)⎞⎠ (137)

for even values of k. It is important to note that due to (134) the differences π(k)
s −π

(k)
−s ∈ so(k)

and also π
(k)
0 ∈ so(k).

Let us now outline how one can construct spin 3/2 soliton of the N-wave equations related
to sl(5). First we have to embed the dressing factor U(4) which is a 4 × 4 matrix into a 5 × 5
dressing factor. This can be done in several inequivalent ways, which reflects the fact that
the group SO(4) can be embedded into the group SL(5) in different ways. As first of them
we choose the following one. First we extend the four-component vectors

∣∣N(k)
a

〉
into five-

component ones
∣∣N(k)

a

〉 = (〈
N(k)

a

∣∣, 0
)T

. We will need also the vector |e5〉 = (0, 0, 0, 0, 1)T .
Then we can construct the 5 × 5 dressing factor

U(4) = π
(4)
−3/2c

−3/2(λ) + π
(4)
−1/2c

−1/2(λ) + π
(4)
1/2c

1/2(λ) + π
(4)
3/2c

3/2(λ), (138)

where

π(4)
a =

∣∣N(4)
a

〉〈
M(4)

a

∣∣〈
M(4)

a

∣∣N(4)
a

〉 , π
(4)
0 =

∣∣N(4)
0

〉〈
M(4)

0

∣∣〈
M(5)

0

∣∣N(4)
0

〉 + |e5〉〈e5|. (139)

In order to calculate the corresponding soliton solution it remains to insert U(5) as u(x, λ)

into (108). For Q(0) = 0 the result will be

Q3/2 =

⎛⎜⎜⎜⎜⎜⎝
0

√
3q+ 0 0 0√

3q− 0 2q+ 0 0
0 2q− 0

√
3q+ 0

0 0
√

3q− 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ , (140)

where the functions q±(x, t) are given by (59).
It is natural to analyze the structure of the discrete eigenvalues λ± corresponding to these

types of soliton solutions. The discrete eigenvalues of L are the zeroes of the principal minors
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m±
k (λ) of the scattering matrix T (λ). To this end we have to calculate the diagonal factors

D±(λ) of the Gauss decomposition of T (λ). The result is

m+
1(λ) = c3(λ)m+

0;1(λ), m+
2(λ) = c4(λ)m+

0;2(λ),
(141)

m+
3(λ) = c3(λ)m+

0;3(λ), m+
4(λ) = m+

0;4(λ).

Comparing with (129) we conclude that going to higher representations of sl(2) leads to
multiple zeroes of some of the principle minors of T (λ). Therefore the resolvent of L will
have poles of higher order at λ±, though the residues at this points will be expressed by the
same polarization vectors as for the 1

2 -spin solitons. One consequence of this construction is
that the higher spin sl(2) solitons have the two degrees of freedom as the standard (spin 1

2 )
solitons.

3.5. Typical sl(3)-solitons

Here |n0〉 has three non-vanishing components. We consider three examples of such
polarization vectors

(a) |n0〉 =

⎛⎜⎜⎜⎜⎝
n0,1

0
n0,3

0
n0,5

⎞⎟⎟⎟⎟⎠ , (b) |n0〉 =

⎛⎜⎜⎜⎜⎝
0

n0,2

n0,3

n0,4

0

⎞⎟⎟⎟⎟⎠ , (c) |n0〉 =

⎛⎜⎜⎜⎜⎝
n0,1

n0,2

n0,3

0
0

⎞⎟⎟⎟⎟⎠ . (142)

Therefore the sl(3)-solitons have two internal degrees of freedom.
The asymptotics of the projector P(x) read as follows:

(a) lim
x→∞ P(x) = E11, lim

x→−∞ P(x) = E55,

(b) lim
x→∞ P(x) = E22, lim

x→−∞ P(x) = E44, (143)

(c) lim
x→∞ P(x) = E11, lim

x→−∞ P(x) = E33.

Note that cases (a) and (b) in (143) coincide with the corresponding cases in (125).
Therefore the set of Evans functions that acquire zeroes will be the same as for the
corresponding sl(2) solitons. In case (c) of (143) we have

m+
1(λ) = c(λ)m+

0,1(λ), m+
2(λ) = c(λ)m+

0,2(λ),
(144)

m−
4 (λ) = m−

0,4(λ)/cλ), m−
3 (λ) = m−

0,3(λ)/c(λ),

whereas the remaining Evans functions m+
j (λ) with j = 3, 4, and m−

p (λ) with p = 1, 2 remain
regular.

In case (a) the corresponding one-soliton solutions acquire the form

(a) q1s =

⎛⎜⎜⎜⎜⎝
0 0 q13 0 q15

0 0 0 0 0
q∗

13 0 0 0 q35

0 0 0 0 0
q∗

15 0 q∗
35 0 0

⎞⎟⎟⎟⎟⎠ , (b) q1s =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 q23 q24 0
0 q∗

23 0 q34 0
0 q∗

24 q∗
34 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎠ ,

(c) q1s =

⎛⎜⎜⎜⎜⎝
0 q12 q23 0 0

q∗
12 0 q23 0 0

q∗
13 q∗

23 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠ ,

(145)
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where the matrix elements qks(x, t) are given by

qks(x, t) = − iν(Jk − Js)εs eν(J̃k+J̃s )(x+̃vks t)n0,kn
∗
0,s e−iµ(Jk−Js)(x+w15t)

|n0,1|2 e2ν(J̃1x+̃I1t) + |n0,3|2 e2ν(J̃3x+̃I3t) + |n0,5|2 e2ν(J̃5x+̃I5t)
, (146)

and

J̃k = Jk − (J1 + J3 + J5)/3, Ĩk = Ik − (I1 + I3 + I5)/3, ṽks = J̃k + J̃s

Ĩk + Ĩs

. (147)

This soliton has two internal degrees of freedom and is regular.
Obviously it is by now clear how one can write more complicated solitons like sl(4)

which would be characterized by the polarization vectors of the form

(a) |n0〉 =

⎛⎜⎜⎜⎜⎝
n0,1

n0,2

n0,3

n0,4

0

⎞⎟⎟⎟⎟⎠ , (b) |n0〉 =

⎛⎜⎜⎜⎜⎝
n0,1

n0,2

n0,3

0
n0,5

⎞⎟⎟⎟⎟⎠ , . . . . (148)

The sl(4)-solitons will have three internal degrees of freedom.
We note here that due to our choice of J in (106), sl(4)-solitons cannot give rise to

generalized eigenfunctions.
Of course one could try to embed sl(3) into g using one of its higher dimensional

representations. The algebra sl(3) has a second three-dimensional representation which is
obtained related to the typical one used above by an exterior automorphism. The corresponding
soliton solutions are obtained from those demonstrated above by a re-parameterization of
the polarization vectors. The next irreducible representation of sl(3) which is the adjoint
representation, has dimension 8, so it cannot be embedded into sl(5). Of course, considering
algebras g of rank high enough it is possible to embed subalgebras g0 using their non-typical
representations.

4. Eigenfunctions and eigensubspaces

The structure of these eigensubspaces and the corresponding solitons becomes more
complicated with the growth of n.

In what follows we start with the generic case and split the ‘polarization’ vector into two
parts

|n0〉 = |p0〉 + |d0〉; |p0〉 =

⎛⎜⎜⎜⎜⎝
n0,1

n0,2

n0,3

0
0

⎞⎟⎟⎟⎟⎠ , |d0〉 =

⎛⎜⎜⎜⎜⎝
0
0
0

n0,4

n0,5

⎞⎟⎟⎟⎟⎠ , (149)

and therefore

|n〉 = |p〉 + |d〉, |p〉 = χ+
0 (x, λ+)|p0〉, |d〉 = χ+

0 (x, λ+)|d0〉. (150)

This splitting is compatible with (106) and has the advantage: if χ+
0 (x, λ+) = exp(−iλ+Jx)

then |p〉 increases exponentially for x → ∞ and decreases exponentially for x → −∞;
|d〉 decreases exponentially for x → ∞ and increases exponentially for x → −∞, see also
lemma 1.
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What we will prove below is that one can take a special linear combination of the columns
of χ+

0 (x, λ+) which decreases exponentially for both x → ∞ and x → −∞. Doing this we
will use the fact that

χ+(x, λ+)|n0〉 ≡ (11 − P(x))χ+(x, λ+)|n0〉 = (11 − P(x))|n(x)〉 = 0. (151)

Lemma 1. The eigenfunctions of L provided by

f+(x) = χ+(x, λ+)|p0〉 = −χ+(x, λ+)|d0〉, (152)

decrease exponentially for both x → ∞ and x → −∞.

Proof. From (151) and (149) there follows that both expressions for f+(x, t) coincide, so we
can use each of them to our advantage, see (152). We will use also the fact that 11 − P(x) is a
bounded function of x.

We start with

lim
x→∞ f+(x) = lim

x→∞ χ′,+(x, λ+)|d0〉 = (11 − P+) lim
x→∞ e−iλ+Jx

T
−(λ+)|d0〉, (153)

where T
−(λ+) is the lower triangular matrix introduced in (17). If the potential is on finite

support or is reflectionless then T
−(λ) is rational function well defined for λ = λ+. If

the potential is generic then T
−(λ) does not allow analytic continuation off the real axis.

Nevertheless T
−(λ+) can be understood as lower triangular constant matrix (generalizing

the constant C+
0 of the NLS case). Being lower triangular T

−(λ+) maps |d0〉 onto
|d ′

0〉 = T
−
0 (λ+)|d0〉 which is again of the form (149), i.e. its first three components vanish.

Therefore

lim
x→∞ eνaxf+(x) = lim

x→∞(11 − P+) eνax

⎛⎜⎜⎜⎜⎜⎝
0
0
0

e−iλ+J4xn′
0,4

e−iλ+J5xn′
0,5

⎞⎟⎟⎟⎟⎟⎠ = 0, (154)

for any constant a > 0 such that a + J4 < 0.
Likewise we can calculate the limit for x → −∞

lim
x→−∞ f+(x) = − lim

x→−∞ χ′,+(
x, λ+

1

)|p0〉 = −(11 − P+) lim
x→∞ e−iλ+Jx

S
+(λ+)|p0〉. (155)

The upper triangular matrix S
+(λ+) is treated analogously as T

−(λ+). In the generic case it is
just an upper triangular constant matrix which maps |p0〉 onto |p′

0〉 = S
+(λ+)|p0〉 whose last

two components vanish. Therefore

lim
x→−∞ eνbxf+(x) = lim

x→−∞ eνbx(11 − P−)

⎛⎜⎜⎜⎜⎜⎝
e−iλ+J1xn′

0,1

e−iλ+J2xn′
0,2

e−iλ+J3xn′
0,3

0
0

⎞⎟⎟⎟⎟⎟⎠ = 0, (156)

for any constant b < 0 such that J3 + b > 0.
The lemma is proved. �

For the choices (a) and (b) of |n0〉 in (125) we define the square integrable discrete
eigenfunctions using the splitting (149) and (152).
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Remark 4. The choice (c) for |n0〉 does not allow for the splitting (149). In this case we can
introduce only generalized discrete eigenfunctions, f gen(x, t), which are not square integrable.
But upon multiplying by the exponential factor e−νcx with c = (J1 + J2)/2, we can obtain
square integrable functions f(x) = f gen(x) e−νcx . See also the discussion in the following
subsection.

The generalized eigenfunctions come up in situations when the splitting (149) is not
possible, i.e. when either |p0〉 or |d0〉 vanish. Let us construct the generalized eigenfunction
for the polarization vector |n0〉 of case (c) in (142). Let (J1 + J2 + J3)/3 = a′; then
J ′

1 = J1 − a′, J ′
2 = J2 − a′ and J ′

3 = J3 − a′ are such that J ′
1 > J ′

2 > J ′
3 and J ′

1 + J ′
2 + J ′

3 = 0.
Let us assume for definiteness that J ′

1 > J ′
2 > 0 and 0 > J ′

3. Then we can split |n0〉 into

|n0〉 = |p′
0〉 + |d ′

0〉, |p′
0〉 =

⎛⎜⎜⎜⎜⎝
n0,1

n0,2

0
0
0

⎞⎟⎟⎟⎟⎠ , |d ′
0〉 =

⎛⎜⎜⎜⎜⎝
0
0

n0,3

0
0

⎞⎟⎟⎟⎟⎠ , (157)

and define

f+,′(x) = χ+(x, λ+)|p′
0〉 = −χ+(x, λ+)|d ′

0〉. (158)

Obviously f+,′(x) is an eigenfunction of the dressed operator L corresponding to the eigenvalue
λ+.

Then we can prove the following lemma.

Lemma 2. The eigenfunction f+,′(x) is such that eν1a
′xf+,′(x) decreases exponentially for

both x → ±∞.

Proof. The proof is similar to the one of lemma 1 and we omit it. �

Since the polarization vector |n0〉 in case (c) of (142) does not allow the splitting (149)
the corresponding discrete eigenfunction will not be square integrable, so it will give rise to a
generalized eigenfunction.

5. Effects of reductions on soliton solutions

In this section, we analyze how different kinds of reductions affect the classification of the
soliton solutions to a nonlinear equation. This criterion is tightly connected with symmetries
imposed on the auxiliary linear problem (the zero curvature condition). We shall consider in the
next subsection types of solitons which differ from one another in the number of eigenvalues
associated with them: doublet solitons associated with two purely imaginary eigenvalues
λ± = ±iν and quadruplet solitons associated with four eigenvalues situated symmetrically
with respect to the real and the imaginary axis in C. This is the case when a Z2 ×Z2 reduction
is in action. Such a type of reduction is compatible with the Lax representation of a NLEE to
have a dispersion law obeying f (−λ) = −f (λ). The N-wave equation is a typical example
of NLEE to admit a variety of Z2 reductions [27] since fN−w(λ) = −λI .

It is also possible to impose reductions that do not affect the spectral parameter. Thus,
imposing such reduction on the generalized ZSS related to the exterior automorphism of sl(n)

we can effectively reduce it to the generalized ZSS system for its subalgebras so(n) and to the
symmetric space of BD.I type.
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For further convenience we shall say that the matrix X belongs to the orthogonal algebra
so(n) if

X + S
(n)
0 XT S

(n)
0 = 0, S

(n)
0 S

(n)
0 = 11, (159)

where S
(n)
0 is defined by

S
(n)
0 =

n+1∑
s=1

(−1)s+1E
(n)
s,n+1−s , (160)

for n = 2r + 1 and

S
(n)
0 =

r∑
s=1

(−1)s+1
(
E

(n)
s,n+1−s + E

(n)
n+1−s,s

)
(161)

for n = 2r . With this definition of orthogonality the Cartan subalgebra generators are
represented by diagonal matrices. By E(n)

sp above we mean n × n matrix whose matrix
elements are

(
E(n)

sp

)
ij

= δsiδpj .
In order to get the ZSS related to the symmetric space of BD.I type we have to specify

J = diag(1, 0, . . . , 0,−1) and take q(x, t) = [J,Q(x, t)] where Q(x, t) ∈ so(n). In this
case the NLEE with linear dispersion law become trivial. However, one can consider NLEE
with quadratic and cubic dispersion laws which are multicomponent generalizations of NLS
and mKdV equations respectively.

5.1. N-wave system related to so(5)

From now on we shall focus our attention on a N-wave equation related to the so(5) algebra.
The corresponding Lax pair is given by (3), (4) where

U(x, t, λ) = [J,Q(x, t)] − λJ, V (x, t, λ) = [I,Q(x, t)] − λI,
(162)

J = diag(J1, J2, 0,−J2,−J1), I = diag(I1, I2, 0,−I2,−I1),

and Q(x, t) is a function taking values in so(5). This algebra has two simple roots
α1 = e1−e2, α2 = e2, and two more positive roots: α1+α2 = e1 and α1+2α2 = e1+e2 = αmax.
When they come as indices, e.g. in Qα we will replace them by sequences of two integers:
α → kn if α = kα1 + nα2. Moreover, we are going to use the auxiliary notation
kn = −kα1 − nα2. Thus the N-wave system itself consists of eight equations. Half of
them read

i(J1 − J2)Q10,t (x, t) − i(I1 − I2)Q10,x(x, t) + kQ11(x, t)Q01(x, t) = 0,

iJ1Q11,t (x, t) − iI1Q11,x(x, t) − k(Q10Q01 − Q12Q01)(x, t) = 0,

i(J1 + J2)Q12,t (x, t) − i(I1 + I2)Q12,x(x, t) − kQ11(x, t)Q01(x, t) = 0,

iJ2Q01,t (x, t) − iI2Q01,x(x, t) + k(Q11Q12 + Q10Q11)(x, t) = 0,

(163)

where k := J1I2 −J2I1 is a constant describing the wave interaction. The other four equations
can be derived from those above by using the formal transformation Qkn ↔ Qkn. One is able
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to integrate the system by applying the already discussed ideas—dressing method, etc. For
that purpose we make use of the dressing factor (38). The one-soliton solution reads

Q10(x, t) = λ− − λ+

〈m|n〉 (e−i(λ+z1−λ−z2)n0,1m0,2 + ei(λ+z2−λ−z1)n0,4m0,5),

Q11(x, t) = λ− − λ+

〈m|n〉 (e−iλ+z1n0,1m0,3 − e−iλ−z1n0,3m0,5),

Q12(x, t) = λ− − λ+

〈m|n〉 (e−i(λ+z1+λ−z2)n0,1m0,4 + e−i(λ−z1+λ+z2)n0,2m0,5),

Q01(x, t) = λ− − λ+

〈m|n〉 (e−iλ+z2n0,2m0,3 + e−iλ−z2n0,3m0,4),

〈m|n〉 =
5∑

k=1

e−i(λ+−λ−)zkn0,km0,k, zk = Jkx + Ikt, k = 1, 2.

(164)

The other four field can be formally constructed by doing the following transformation:

Qkn ↔ Qkn, e−iλ+zk ↔ eiλ−zk , n0,j ↔ m0,j .

For the typical Z2 reduction (120) of course we must choose K0 = diag(ε1, ε2, 1, ε2, ε1) ∈
SO(5) where εi = ±1. As a result J and I become real valued and K0Q

†K−1
0 = −Q, i.e.,

Q10 = −ε1ε2Q
∗
10, Q12 = −ε1ε2Q

∗
12, Q11 = −ε1Q

∗
11, Q∗

01 = −ε2Q01.

(165)

The corresponding 4-wave system takes the form

i(J1 − J2)Q10,t (x, t) − i(I1 − I2)Q10,x(x, t) − kε2Q11(x, t)Q∗
01(x, t) = 0,

iJ1Q11,t (x, t) − iI1Q11,x(x, t) − k(Q10Q01 + ε2Q12Q
∗
01)(x, t) = 0,

i(J1 + J2)Q12,t (x, t) − i(I1 + I2)Q12,x(x, t) − kQ11(x, t)Q01(x, t) = 0,

iJ2Q01,t (x, t) − iI2Q01,x(x, t) − kε1(Q
∗
11Q12 + ε2Q

∗
10Q11)(x, t) = 0.

(166)

The particular case ε1 = ε2 = 1 occurs in Raman scattering [28].
The corresponding one-soliton solution is obtained from (164) imposing λ+ = (λ−)∗ =

µ + iν and |m0〉 = K0|n∗
0〉. Here we just note that

〈m|n〉 = ε1(e
−2νz1 |n0,1|2 + e2νz1 |n0,5|2) + ε2(e

−2νz2 |n0,2|2 + e2νz2 |n0,4|2) + |n0,3|2. (167)

Taking ε1 = ε2 = 1 we find that 〈m|n〉 is positive for all x and t. If ε1ε2 = −1 the product
〈m|n〉 may vanish for finite x and t, i.e. the corresponding soliton is singular.

5.2. Z2 reduction related to Weyl group elements

Here we consider several Z2 reductions related to Weyl group elements. The first one is of the
type

K1U
∗(λ∗)K−1

1 = −U(λ) ⇒ K1Q
∗K−1

1 = Q, K1J
∗K−1

1 = −J, (168)

where K1 corresponds to the Weyl reflection Se1−e2 ,

K1 =

⎛⎜⎜⎜⎜⎝
0 −1 0 0 0

−1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

⎞⎟⎟⎟⎟⎠ . (169)
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This reduction leads to the requirements J2 = −J ∗
1 , I2 = −I ∗

1 for J and I respectively, and
the following ones for Q,

Q10 = Q∗
10, Q01 = −Q∗

11, Q∗
12 = −Q12, Q01 = −Q∗

11
, Q∗

12
= −Q12.

The Z2 reduced integrable system consists of the following five equations for three
complex Q10,Q11,Q11 and two real fields Q12 = iq12,Q12 = iq12:

2J10Q10,t (x, t) − 2I1,0Q10,x(x, t) − k0Q11(x, t)Q∗
11

(x, t) = 0,

J1Q11,t (x, t) − I1Q11,x(x, t) + k0(Q10Q
∗
11 − iq12Q

∗
11

)(x, t) = 0,

2J1,1q12,t (x, t) − 2I1,1q12,x(x, t) − k0|Q11(x, t)|2 = 0, (170)

J1Q11,t (x, t) − I1Q11,x(x, t) + k0(Q10Q
∗
11

− iq12Q
∗
11)(x, t) = 0,

2J1,1Q12,t (x, t) − 2I1,1Q12,x(x, t) − k0|Q11(x, t)|2 = 0,

where J1 = J0,1 + iJ1,1, I1 = I0,1 + iI1,1 and the interaction constant k0 = −ik is real.
Next we consider a Z2 reduction of the type

K2U
†(λ∗)K−1

2 = U(λ) ⇒ K2J
∗K−1

2 = J, K2Q
†K−1

2 = −Q,

with K = Se2 , i.e.,

K2 =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 1 0 0 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎠ . (171)

Therefore we have the following relations:

J ∗
1 = J1, J ∗

2 = −J2, Q10 = −Q∗
12, Q12 = −Q∗

10,

Q11 = Q∗
11, Q∗

01 = Q01, Q∗
01

= Q01.

Thus we derive the following 5-wave system:

(J1 − J2)Q10,t (x, t) − (I1 − I2)Q10,x(x, t) + k0Q11(x, t)Q01(x, t) = 0,

J1Q11,t (x, t) − I1Q11,x(x, t) − k0(Q10Q01 − Q12Q01)(x, t) = 0,

(J1 + J2)Q12,t (x, t) − (I1 + I2)Q12,x(x, t) − k0Q11(x, t)Q01(x, t) = 0,

J2Q01,t (x, t) − I2Q01,x(x, t) + k0(Q
∗
11Q12 − Q∗

12Q11)(x, t) = 0,

J2Q01,t (x, t) − I2Q01,x(x, t) − k0(Q11Q
∗
10 − Q10Q

∗
11)(x, t) = 0,

(172)

where k0 = −ik is real.
The last two reductions requested complex valued J and I. As a result the direct and

inverse spectral problems for the corresponding Lax operator L become more complicated
[26]. In particular, the continuous spectrum of L fills up a bunch of lines in the complex
λ-plane intersecting at the origin. The construction of the corresponding fundamental analytic
solutions and the dressing factors requires additional care and will be discussed elsewhere.

5.3. Reductions of MNLS-type systems related to so(5)

MNLS equations related to so(n+ 2) algebras have a Lax representation of the following type:

L = i∂x + q(x, t) − λJ, (173)

M = i∂t + V0(x, t) + V1(x, t)λ − λ2J, (174)
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V1(x, t) = q(x, t), V0(x, t) = iad J ∂xq + 1
2 [ad J q, q]. (175)

Here J is the element of the Cartan subalgebra of so(n) dual to e1 and

q :=
⎛⎝ 0 qT 0

p 0 s0q
0 pT s0 0

⎞⎠ , J := H1 = diag(1, 0, . . . , 0,−1), (176)

where

�q = (q2, . . . , qn+1)
T , �p = (p2, . . . , pn+1)

T .

Because of the specific choice of J these MNLS equations can be viewed as connected
with the BD.I symmetric space. In most of this section we will use the simplest case with
n = 3, though all results can be easily generalized for any rank of the algebra. The MNLS
system itself takes the form

iq2,t + q2,xx + 2q2
2p2 + q2

3p4 + 2q3q2p3 = 0, (177)

iq3,t + q3,xx + 2q2q4p3 + 2q2p2q3 + 2q3q4p4 + q2
3p3 = 0, (178)

iq4,t + q4,xx + 2q2
4p4 + q2

3p2 + 2q3q4p3 = 0, (179)

ip2,t − p2,xx − 2p2
2q2 − p2

3q4 − 2p3p2q3 = 0, (180)

ip3,t − p3,xx − 2p2p4q3 − 2p2q2p3 − 2p4q4p3 − p2
3q3 = 0, (181)

ip4,t − p4,xx − 2p2
4q4 − p2

3q2 − 2p3p4q3 = 0. (182)

Its one-soliton solution derived via dressing procedure reads

qk = λ− − λ+

�
(e−iλ+(x+λ+t)n0,1m0,k + (−1)k e−iλ−(x+λ−t)n0,6−km0,5), (183)

pk = λ− − λ+

�
(eiλ−(x+λ−t)n0,km0,1 + (−1)k eiλ+(x+λ+t)n0,5m0,6−k), (184)

where

� = ei(λ−−λ+)(x+(λ−+λ+)t)n0,1m0,1 +
4∑

k=2

n0,km0,k + ei(λ+−λ−)(x+(λ−+λ+)t)n0,5m0,5.

Consider a Z2 reduction of the form

KU †(x, λ∗)K−1 = U(x, λ), i.e. Kq†K−1 = q, KJ ∗K−1 = J. (185)

If J is real there are two inequivalent choices for K satisfying KJK−1 = J : the first one
is the typical reduction via an element of the Cartan subgroup, K1 = diag(ε1, ε2, 1, ε2, ε1),

ε2
1,2 = 1; the second one is a reduction via a Weyl reflection Se2 , see (171). The reductions

obtained with K1 and K2 respectively give

p2 = ε1ε2q
∗
2 , p3 = ε1q

∗
3 , p4 = ε1ε2q

∗
4 ; (186)

p2 = q∗
4 , p3 = −q∗

3 , p4 = q∗
2 . (187)

The former Z2 reduction leads to the following three-component system of NLS equation:

iq2,t + q2,xx + 2ε1(ε2|q2|2 + |q3|2)q2 + ε1ε2q
2
3q∗

4 = 0, (188)
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iq3,t + q3,xx + 2ε1q2q4q
∗
3 + ε1(2ε2|q2|2 + 2ε2|q4|2 + |q3|2)q3 = 0, (189)

iq4,t + q4,xx + 2ε1(ε2|q4|2 + |q3|2)q4 + ε1ε2q
2
3q∗

2 = 0. (190)

In order to integrate this system we apply the dressing procedure with the dressing factor (38).
Taking into account that in the reduced case we have the relations

λ+ = (λ−)∗ = µ + iν, |m0〉 = K1|n∗
0〉, (191)

we find that its soliton solution is given by

q2 = −2iν

�
e−iµ(x−vt)(ε2 eν(x−ut)n0,1n

∗
0,2 + ε1 e−ν(x−ut)n0,4n

∗
0,5), (192)

q3 = −2iν

�
e−iµ(x−vt)(eν(x−ut)n0,1n

∗
0,3 − ε1 e−ν(x−ut)n0,3n

∗
0,5), (193)

q4 = −2iν

�
e−iµ(x−vt)(ε2 eν(x−ut)n0,1n

∗
0,4 + ε1 e−ν(x−ut)n0,2n

∗
0,5), (194)

� = ε1 e2ν(x−ut)|n0,1|2 + ε2(|n0,2|2 + |n0,4|2) + |n0,3|2 + ε1 e−2ν(x−ut)|n0,5|2, (195)

v = ν2 − µ2

µ
, u = −2µ. (196)

The latter reduction gives rise to another inequivalent system of three NLS equations

iq2,t + q2,xx + 2(q2q
∗
4 − |q3|2)q2 + q2

3q∗
2 = 0, (197)

iq3,t + q3,xx − 2q2q4q
∗
3 + (2q2q

∗
4 + 2q4q

∗
2 − |q3|2)q3 = 0, (198)

iq4,t + q4,xx + 2(q4q
∗
2 − |q3|2)q4 + q2

3q∗
4 = 0. (199)

Then we have the following one-soliton solution:

q2 = −2iν

�
e−iµ(x−vt)(eν(x−ut)n0,1n

∗
0,4 + e−ν(x−ut)n0,4n

∗
0,5), (200)

q3 = 2iν

�
e−iµ(x−vt)(eν(x−ut)n0,1n

∗
0,3 + e−ν(x−ut)n0,3n

∗
0,5), (201)

q4 = −2iν

�
e−iµ(x−vt)(eν(x−ut)n0,1n

∗
0,2 + e−ν(x−ut)n0,2n

∗
0,5), (202)

� = e2ν(x−ut)|n0,1|2 + (n0,2n
∗
0,4 + n∗

0,2n0,4) − |n0,3|2 + e−2ν(x−ut)|n0,5|2. (203)

As in the previous example the polarization vectors are interrelated via (191) which in this
case reads

m0,k =
{
n∗

0,k, k = 1, 5
(−1)kn∗

0,6−k, k = 2, 3, 4.

Next we consider a Z2 × Z2 reduction, which is a combination of reductions with K1 and
K2. This is possible only for ε1 = −1. Then

p2,4 = −ε2q
∗
2,4, q2 = −ε2q4, p3 = −q∗

3 , (204)

and we obtain the following two-component NLS system:

iq2,t + q2,xx − 2(ε2|q2|2 + |q3|2)q2 + q2
3q∗

2 = 0, (205)

iq3,t + q3,xx − (4ε2|q2|∗ + |q3|2)q3 + 2ε2(q2)
2q∗

3 = 0. (206)

28



J. Phys. A: Math. Theor. 41 (2008) 315213 V S Gerdjikov et al

Its one-soliton solution takes the form

q2 = 2iν

�
e−iµ(x−vt)ε2(e

ν(x−ut)n0,1n
∗
0,2 + e−ν(x−ut)n0,2n

∗
0,5), (207)

q3 = 2iν

�
e−iµ(x−vt)(eν(x−ut)n0,1n

∗
0,3 + e−ν(x−ut)n0,3n

∗
0,5), (208)

� = e2ν(x−ut)|n0,1|2 − 2ε2|n0,2|2 − |n0,3|2 + e−2ν(x−ut)|n0,5|2, (209)

v = ν2 − µ2

µ
, u = −2µ, (210)

where we have made use of the following relations:

m0,k =
⎧⎨⎩

n∗
0,k, k = 1, 5

−ε2n
∗
0,k = n∗

0,6−k, k = 2, 4,

−n∗
0,3, k = 3.

5.4. MMKdV equations on symmetric spaces of BD.I type

Multicomponent MKdV related to so(n + 2) algebra possesses a Lax pair with the L operator
(173) and M-operator in the form

Mψ(x, t, λ) ≡ i∂tψ + (V0(x, t) + λV1(x, t) + λ2V2(x, t) − λ3J )ψ(x, t, λ),

V2(x, t) = q(x, t), V1(x, t) = iad−1
J ∂xq + 1

2

[
ad−1

J q, q(x, t)
]
, (211)

V0(x, t) = −∂2
xxq + 1

2

[
ad−1

J q,
[
ad−1

J q, q(x, t)
]]

+ i[∂xq, q].

The corresponding MMKdV equations can be written down in compact form as

∂t �q + ∂3
xxx �q + 3( �p, �q)∂x �q + 3(∂x �q, �p)�q − 3(∂x �qs0�q)s0 �p = 0, (212)

∂t �p + ∂3
xxx �p + 3( �p, �q)∂x �p + 3(∂x �p, �q) �p − 3 (∂x �ps0 �p) s0�q = 0. (213)

Consider a Z2 reduction of the type

U †(λ∗) = U(λ), ⇒ �p = �q∗. (214)

Then we obtain the reduced system of equations

∂t �q + ∂3
xxx �q + 3|�q|2∂x �q + 3(∂x �q, �q∗)�q − 3 (∂x �qs0�q) s0�q∗ = 0. (215)

Its one-soliton solution reads

qk = −iν e−iµ(x−ut−δ0)

cosh(2ν(x − vt − ξ0)) + C
(eν(x−vt−ξ0)c∗

k + (−1)k e−ν(x−vt−ξ0)cn+3−k),

ck = n0,k√|n0,1||n0,n+2|
, k = 2, . . . , n + 1 C =

n+1∑
k=2

|n0,k|2
2|n0,1||n0,n+2| , (216)

v = ν2 − 3µ2, u = 3ν2 − µ2, δ0 = arg n0,1

µ
, ξ0 = 1

2ν
ln

|n0,n+2|
|n0,1| ,

provided we have fixed arg n0,1 = −arg n0,n+2 by using the natural U(1) symmetry of the
solution.

As a final example let us consider MKdV related to so(5) with a Z2 reduction of the type

KU †(−λ∗)K−1 = U(λ) ⇒ Kq†K−1 = q, KJK−1 = −J. (217)
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We choose K = K0 ◦ We1 where

We1 =

⎛⎜⎜⎜⎜⎝
0 0 0 0 −1
0 1 0 0 0
0 0 −1 0 0
0 0 0 1 0

−1 0 0 0 0

⎞⎟⎟⎟⎟⎠ , ⇒ K =

⎛⎜⎜⎜⎜⎝
0 0 0 0 −ε1

0 ε2 0 0 0
0 0 −1 0 0
0 0 0 ε2 0

−ε1 0 0 0 0

⎞⎟⎟⎟⎟⎠ (218)

is the Weyl reflection with respect to the hyperplane orthogonal to e1. The following
interrelations hold true:

q4 = −ε1ε2q
∗
2 , q3 = −ε1q

∗
3 , p4 = −ε1ε2p

∗
2, p3 = −ε1p

∗
3 . (219)

As a consequence of the reduction we have

λ+ = −(λ−)∗, |m〉 = K|n〉∗, (220)

or

(λ±)∗ = −λ±, |n〉 = SK|n〉∗, 〈m| = 〈m|∗(SK)−1. (221)

Applying another Z2 reduction of the type

UT (−λ) = −U(λ), ⇒ qT = −q, (222)

we obtain that

λ+ = −λ−, |m〉 = |n〉. (223)

The corresponding system of MKdV is

q2,t + q2,xxx − 3(q2q3)xq3 + 3ε1ε2q3q
∗
2 q3,x − 6q2

2q2,x = 0, (224)

q3,t + q3,xxx + 3ε1ε2|q2|2xq3 − 3(q2q3)xq2 − 3(q∗
2 q3)xq

∗
2 − 3q2

3q3,x = 0, (225)

and is new to the best of our knowledge. Combining both reductions we again may have
two types of solitons. The doublet soliton corresponds to purely imaginary λ± = ±iν and
|n〉 = SK|n〉∗ and is given by

q2 = iν eiδ0

ε1 cosh 2ν(x − vt − ξ0) + C
(eν(x−vt−ξ0)c2 + e−ν(x−vt−ξ0)c4), (226)

q3 = 2iνc3 eiδ0 sinh ν(x − vt − ξ0)

ε1 cosh 2ν(x − vt − ξ0) + C
,

δ0 = arg n0,1 = arg n0,5 = lπ

2
, l ∈ Z, C = 2ε2 Re(n0,2n0,4) + |n0,3|2

2|n0,1||n0,5| , (227)

c∗
1 = −ε1c1, c∗

2 = −ε2c4, c∗
3 = −c3, c∗

5 = −ε1c5,

where ck, v and ξ0 coincide with those in the previous example when r = 2. From (219) it
follows that q3 is either real or purely imaginary valued function.

Yet another possibility to ensure compatibility of both Z2 reductions is to modify the
dressing factor into

u(x, t, λ) = 11 +
A(x, t)

λ − λ0
− KSA∗(x, t)SK

λ + λ∗
0

− SA(x, t)S

λ + λ0
+

KA∗(x, t)K

λ − λ∗
0

, (228)

which leads to the quadruplet soliton solution

q(x, t) = [J,A − KSA∗SK − SAS + KA∗K](x, t). (229)
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In order to find it we have to calculate the matrix A(x, t). For that purpose it proves to be
convenient to decompose A into A = XFT , where X and F are rectangular matrices of rank
s � r and λ0 = µ + iν. It can be checked that F(x, t) = ei(λ0x+λ3

0t)J F0, F0 = const. In the
simplest s = 1 case for the factor X one can obtain the following:

X = a∗F + bSKF ∗ − cKF ∗

|a|2 + b2 − c2
,

where

a = FT F

2λ0
= |F0,1F0,5|

λ0
(cosh 2(φR − iφI) + Ca), Ca = F 2

0,2 + F 2
0,3 + F 2

0,4

2|F0,1F0,5| ,

b = (F †SKF)

2iν
= i|F0,1F0,5|

ν
(cosh 2φR + Cb), Cb = 2Re(F ∗

0,2F0,4) + |F0,3|2
2|F0,1F0,5| ,

c = (F †KF)

2µ
= |F0,1F0,5|

µ
(cos 2φI + Cc), Cc = |F0,2|2 − |F0,3|2 + |F0,4|2

2|F0,1F0,5| ,

φR = ν

(
x − vt − 1

2ν
ln

|F0,1|
|F0,5|

)
, φI = µ

(
x − ut − arg F0,5

µ

)
,

arg F0,1 = −arg F0,5.

Substituting this result into (229) and choosing ε1 = ε2 = 1 one derives

q2 = 2
√|F0,1F0,2F0,4F0,5|

|a|2 + b2 − c2

{
a∗ cosh(φ−

R − iφ−
I ) − b

(
cosh

(
φ−

R + iφ+
I

)
+ cosh

(
φ+

R − iφ−
I

))
− a cosh

(
φ+

R + iφ+
I

)
+ c

(
cosh

(
φ+

R + iφ−
I

) − cosh
(
φ−

R − iφ+
I

))}
, (230)

q3 = 2i
√|F0,1F0,5|

|a|2 + b2 − c2
Im{(b + c) sinh(φR + iφI) − a∗ sinh(φR − iφI)}F0,3, (231)

where we have used the following notation:

φ±
R = φR ± 1

2
ln

|F0,2|
|F0,4| , φ±

I = φI ± arg F0,4. (232)

6. Discussion and further studies

Here we shall outline some further topics which could be studied and which could lead to a
deeper understanding of these soliton properties.

The first obvious remark is that sl(n) contains as subalgebras also so(p) and sp(p)

subalgebras. So it will be interesting to specify the conditions under which L(λ) has solitons
of type so(p) or sp(p).

The second remark of the same nature is that one can start with L(λ) related to any simple
Lie algebra g (e.g., so(n) or sp(n)). The analysis of soliton solutions for NLEE related to
such systems require deeper knowledge of Lie algebras and their representations.

The explicit form of the corresponding N-wave system related to these algebras has been
reported in [4, 5, 13], see also [29, 30]. What could be done is to analyze the structure of
its soliton solutions [29, 30] which are more involved, especially in the case when additional
reductions are imposed. The construction of the corresponding dressing factors is more
complicated, but one can expect that new interesting types of integrable cubic and quartic
interactions could be obtained.

Another important question is the study of solitons constructed by projectors of rank 2
and higher. Such solitons have been already used by Wadati et al [31] in describing BEC
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with hyperfine structure F = 1. Now each soliton will be parameterized by two polarization
vectors; the corresponding eigensubspace will be two dimensional too. Among the various
types of rank-2 one-soliton solutions, there will be various possible configurations for the two
polarization vectors. An example of a dressing factor u(x, t, λ) constructed by a projector of
second rank is the following one:

u(x, t, λ) = 11 +

(
1√
c(λ)

− 1

)
P2 + (

√
c(λ) − 1)P 2.

Such type of a dressing factor was used in [32] to derive the soliton solutions to a
multicomponent Schrödinger equation relate to symplectic algebra sp(4).

It is known in general how the machinery, well understood for the AKNS system such
as Wronskian relations, expansions over ‘squared solutions’, etc can be generalized also for
these types of systems. The dressing method, after some modifications, can also be applied,
leading to the derivation of their soliton solutions.

An interesting problem is the study of how the different possible reductions (see, e.g.,
[29]) of these systems will influence the number of one-soliton types.

Soliton interactions for various different types of solitons of these systems also present
interesting problems. From the results known for the N-wave systems [9, 10] it is known that
new effects in soliton interaction, such as soliton decay and soliton fusion may arise.
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Appendix A. The orthogonal algebras and BD.I symmetric spaces

The definition of orthogonality used in equations (159)–(161) has the advantage that the Cartan
subalgebras can be represented by diagonal matrices.

It is well known that the two cases of odd and even n are substantially different. The
algebras so(2r + 1) are known as the Br series according to the Cartan classification [33].
Assuming that the reader is familiar with the basics of simple Lie algebras here we just
recall that the root systems of these algebras consist of �− ∪ �+ where �− = −�+ and
�+ ≡ {ei ± ej , ej } with 1 � i < j � r . We provide also the Cartan–Weyl basis of these
algebras in the typical (2r + 1)-dimensional representation

Eei−ej
≡ Eij − S0EjiS0 = Ei,j − (−1)i+jEj̄,ī ,

Eei+ej
≡ Eij̄ − S0Ej̄iS0 = Ei,j̄ − (−1)i+jEj,ī ,

(A.1)
Eei

≡ Ei,r+1 − S0Er+1,iS0 = Ei,r+1 − (−1)i+r+1Er+1,ī ,

Hej
≡ Ejj − S0Ej,jS0 = Ej,j − Ej̄,j̄ . E−α = ET

α .

Each symmetric space is obtained by applying a Cartan involution. This involution
splits the group SO(2r + 1) into a subgroup SO(2r − 1) ⊗ SO(2) and a factor space
SO(2r + 1)/SO(2r − 1) ⊗ SO(2). Effectively the system of positive roots is split into
�+ = �+

0 ∪ �+
1 , where the subsets of roots are defined as follows:

�+
0 = {ei ± ej , ei, 2 � i < j � r}, �+

1 = {e1 ± ej , e1, 2 � j � r}. (A.2)

In fact �+
0 contains all positive roots that are orthogonal to e1, while �+

1 contains all positive
roots that have scalar product equal to 1 with e1.
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Similarly one can consider the algebras so(2r) which are known as the Dr series. Their
Cartan–Weyl basis in the typical 2r-dimensional representation is given by

Eei−ej
≡ Eij − S0EjiS0 = Ei,j − (−1)i+jEj̄,ī ,

Eei+ej
≡ Eij̄ − S0Ej̄iS0 = Ei,j̄ − (−1)i+jEj,ī , (A.3)

Hej
≡ Ejj − S0Ej,jS0 = Ej,j − Ej̄,j̄ . E−α = ET

α .

The corresponding symmetric space is SO(2r + 2)/SO(2r) ⊗ SO(2). The system of
positive roots is split into �+ = �+

0 ∪ �+
1 , where

�+
0 = {ei ± ej , 2 � i < j � r}, �+

1 = {e1 ± ej , 2 � j � r}. (A.4)

Again �+
0 contains all positive roots that are orthogonal to e1, while �+

1 contains all positive
roots that have scalar product equal to 1 with e1.

Appendix B. Higher spin representations of sl(2)

Here we construct the sl(2) dressing factor (130) for higher spin representation of sl(2). This
we do by using completely symmetric tensor powers of u.

Using the way how u acts on basic vectors ei, i = 1, 2 in C2

ue1 = u11e1 + u21e2, ue2 = u12e1 + u22e2. (B.1)

The normalized basis in the completely symmetrized tensor product of C
2 � C

2 is given by

ε1 = e1 ⊗ e1, ε2 = 1√
2
(e2 ⊗ e1 + e1 ⊗ e2), ε3 = e2 ⊗ e2. (B.2)

Since u(x, t, λ) belongs to the group SL(2) it must act on the basic elements as follows:

U(3)(x, λ)(ei ⊗ ej ) = (uei) ⊗ (uej ). (B.3)

Thus we obtain the following representation for the dressing factor for spin-1 representation

U(3) ≡ u � u =

⎛⎜⎜⎝
u2

11

√
2u11u12 u2

12√
2u11u21 u11u22 + u12u21

√
2u22u12

u2
21

√
2u22u21 u2

22

⎞⎟⎟⎠ . (B.4)

Now we have to insert the expressions for uij in terms of c1, nk and mk and thus we derive

U(3) ≡ u � u = c1π
(3)
1 + π

(3)
0 +

1

c1
π

(3)
−1 , (B.5)

where the projectors πa, a = −1, 0, 1 are all rank-1 projectors of the form

π
(3)
1 =

∣∣N(3)
1

〉〈
M

(3)
1

∣∣〈
M

(3)
1

∣∣N(3)
1

〉 , π
(3)
0 =

∣∣N(3)
0

〉〈
M

(3)
0

∣∣〈
M

(3)
0

∣∣N(3)
0

〉 , π
(3)
−1 =

∣∣N(3)
−1

〉〈
N

(3)
−1

∣∣〈
M

(3)
−1

∣∣N(3)
−1

〉 , (B.6)

where
〈
M

(3)
1

∣∣N(3)
1

〉 = 〈
M

(3)
0

∣∣N(3)
0

〉 = 〈
M

(3)
−1

∣∣N(3)
−1

〉 = (m1n1 + m2n2)
2

∣∣N(3)
1

〉 =
⎛⎝ n2

1√
2n1n2

n2
2

⎞⎠ ,
∣∣N(3)

−1

〉 =
⎛⎝ m2

2

−√
2m1m2

m2
1

⎞⎠ ,
∣∣N(3)

0

〉 =
⎛⎝

√
2m2n1

n2m2 − n1m1

−√
2n2m1

⎞⎠ ,

〈
M

(3)
1

∣∣ = (
m2

1,
√

2m1m2,m
2
2

)
,

〈
M

(3)
−1

∣∣ = (
n2

2,−
√

2n1n2, n
2
1

)
, (B.7)〈

M
(3)
0

∣∣ = (
√

2n2m1, n2m2 − n1m1,−
√

2n1m2).
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Similarly the normalized basis in the completely symmetrized tensor products of
C

2 � C
2 � C

2 is given by

ε′
1 = e1 ⊗ e1 ⊗ e1, ε′

2 = 1√
3
(e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e1 + e2 ⊗ e1 ⊗ e1),

(B.8)
ε′

3 = 1√
3
(e1 ⊗ e2 ⊗ e2 + e2 ⊗ e1 ⊗ e2 + e2 ⊗ e2 ⊗ e1), ε′

4 = e2 ⊗ e2 ⊗ e2.

Therefore the dressing factor obtains the form

U(4) =

⎛⎜⎜⎜⎜⎝
u3

11

√
3u2

11u12

√
3u11u

2
12 u3

12√
3u2

11u21 u2
11u22 + 2u11u12u21 u2

12u21 + 2u11u12u22

√
3u2

12u22√
3u11u

2
21 u12u

2
21 + 2u11u21u22 u11u

2
22 + 2u12u21u22

√
3u12u

2
22

u3
21

√
3u2

21u22

√
3u21u

2
22 u3

22

⎞⎟⎟⎟⎟⎠ . (B.9)

It can be decomposed into

U(4) = π
(4)
−3/2c

−3/2 + π
(4)
−1/2c

−1/2 + π
(4)
1/2c

1/2 + π
(4)
3/2c

3/2 (B.10)

where

π(4)
a =

∣∣N(4)
a

〉〈
M(4)

a

∣∣〈
M

(4)
a

∣∣N(4)
a

〉 , a = −3/2,−1/2, 1/2, 3/2. (B.11)

The (co) vectors
∣∣N(4)

a

〉
(〈ma|) are given by∣∣N(4)

−3/2

〉 = (
m3

2,−
√

3m2
2m1,

√
3m2m

2
1,−m3

1

)T
,〈

M
(4)
−3/2 = (

n3
2,−

√
3n2

2n1,
√

3n2n
2
1,−n3

1

)∣∣N(4)
−1/2

〉 = (√
3n1m

2
2,m2(n2m2 − 2n1m1),m1(n1m1 − 2n2m2),

√
3n2m

2
1

)T
,〈

M
(4)
−1/2

∣∣ = (√
3n2

2m1, n2(n2m2 − 2n1m1), n1(n1m1 − 2n2m2),
√

3n2
1m2

)∣∣N(4)
1/2

〉 = (√
3n2

1m2,−n1(n1m1 − 2n2m2), n2(n2m2 − 2n1m1),−
√

3n2
2m1

)T
,〈

M
(4)
1/2

∣∣ = (√
3n2m

2
1,m1(n1m1 − 2n2m2),m2(n2m2 − 2n1m1),−

√
3n1m

2
2

)∣∣N(4)
3/2

〉 = (
n3

1,
√

3n2
1n2,

√
3n1n

2
2, n

3
2

)T
,〈

M
(4)
3/2

∣∣ = (
m3

1,
√

3m2
1m2,

√
3m1m

2
2,m

3
2

)
.
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II. Hamiltonian structures and Bäcklund transformations Bulg. J. Phys. 7 119–33 (in Russian)
[23] Kaup D J 1976 Closure of the squared Zakharov–Shabat eigenstates J. Math. Anal. Appl. 54 849–64

Kaup D J 1976 The three wave interaction—a non-dispersive phenomenon Stud. Appl. Math. 55 9–44
[24] Evans J 1972 Nerve axon equations: I. Linear approximation Indiana Univ. Math. J. 21 877–955

Evans J 1973 Nerve axon equations: II. Stability at rest Indiana Univ. Math. J. 22 75–90
Evans J 1975 Nerve axon equations: III. Stability of the nerve impulse Indiana Univ. Math. J. 22 577–94
Evans J 1975 Nerve axon equations: IV. The stable and unstable impulse Indiana Univ. Math. J. 24 1169–90

[25] Ablowitz M J, Kaup D J, Newell A C and Segur H 1973 Method for solving the sine-Gordon equation Phys.
Rev. Lett. 30 1262–4

[26] Gerdjikov V S and Yanovski A 1994 Completeness of the eigenfunctions for the Caudrey–Beals–Coifman
system J. Math. Phys. 35 3687–725

[27] Gerdjikov V, Grahovski G and Kostov N 2000 Second order reductions of N-wave interactions related to low-
rank simple Lie algebras Proc. Int. Conf. on Geometry, Integrability and Quantization (Varna) ed I Mladenov
and G Naber (Sofia: Coral Press) pp 55–77

Gerdjikov V S, Grahovski G G and Kostov N A 2001 Reductions of N-wave interactions related to low–rank
simple Lie algebras: I. Z2-reductions J. Phys. A: Math. Gen. 34 9425–61

[28] Gerdjikov V S and Kostov N A 1996 Inverse scattering transform analysis of Stokes–anti Stokes stimulated
Raman scattering Phys. Rev. A 54 4339–50 (Preprint patt-sol/9502001)

35

http://dx.doi.org/10.1016/0167-2789(81)90141-X
http://dx.doi.org/10.1103/RevModPhys.51.275
http://dx.doi.org/10.1016/0167-2789(81)90120-2
http://dx.doi.org/10.1007/BF01214664
http://dx.doi.org/10.1088/0305-4470/20/6/021
http://dx.doi.org/10.1007/BF01210726
http://dx.doi.org/10.1007/BF01218638
http://dx.doi.org/10.1088/0305-4470/34/49/327
http://dx.doi.org/10.1007/BF01084167
http://dx.doi.org/10.1016/0167-2789(81)90039-7
http://dx.doi.org/10.1007/BF00419309
http://dx.doi.org/10.1007/BF01078190
http://dx.doi.org/10.1016/0001-8708(79)90021-5
http://dx.doi.org/10.1016/0022-247X(76)90201-8
http://dx.doi.org/10.1512/iumj.1972.21.21071
http://dx.doi.org/10.1512/iumj.1972.22.22009
http://dx.doi.org/10.1512/iumj.1972.22.22048
http://dx.doi.org/10.1512/iumj.1975.24.24096
http://dx.doi.org/10.1103/PhysRevLett.30.1262
http://dx.doi.org/10.1063/1.530441
http://dx.doi.org/10.1088/0305-4470/34/44/307
http://dx.doi.org/10.1103/PhysRevA.54.4339
http://www.arxiv.org/abs/patt-sol/9502001


J. Phys. A: Math. Theor. 41 (2008) 315213 V S Gerdjikov et al

[29] Gerdjikov V S, Grahovski G G, Ivanov R I and Kostov N A 2001 N-wave interactions related to simple Lie
algebras: Z2-reductions and soliton solutions Inverse Problems 17 999–1015

[30] Ivanov R 2004 On the dressing method for the generalized Zakharov–Shabat system Nucl. Phys. B 694 509–24
[31] Ieda J, Miyakawa T and Wadati M 2004 Exact analysis of soliton dynamics for Bose–Einstein condensates

Phys. Rev. Lett. 93 194102
[32] Atanasov V A, Gerdjikov V S, Grahovski G G and Kostov N A 2008 Fordy–Kulish Models and spinor Bose–

Einstein condensates Preprint nlin.SI/0802.4405
[33] Helgason S 1978 Differential Geometry, Lie Groups and Symmetric Spaces (Toronto: Academic)

36

http://dx.doi.org/10.1088/0266-5611/17/4/328
http://dx.doi.org/10.1016/j.nuclphysb.2004.06.039
http://dx.doi.org/10.1103/PhysRevLett.93.194102
http://www.arxiv.org/abs/nlin.SI/0802.4405

	1. Introduction
	2. Preliminaries
	2.1. The generalized Zakharov
	2.2. The Zakharov-Shabat

	3. The Generalized Zakharov-Shabat
	3.1. N-wave system
	3.2. N-wave systems related to
	3.3. Typical sl(2)
	3.4. Higher spin
	3.5. Typical sl(3)

	4. Eigenfunctions and eigensubspaces
	5. Effects of reductions on soliton solutions
	5.1. N-wave system related to
	5.2. Z2 reduction related to Weyl group elements
	5.3. Reductions of
	5.4. MMKdV equations

	6. Discussion and further studies
	Acknowledgments
	Appendix A. The orthogonal algebras and
	Appendix B. Higher spin
	References

